test_sparse_transpose_dev_api.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>

#include <memory>

#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
#include "paddle/phi/kernels/sparse/unary_grad_kernel.h"
#include "paddle/phi/kernels/sparse/unary_kernel.h"
#include "paddle/phi/kernels/transpose_grad_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
namespace phi {
namespace tests {

TEST(DEV_API, sparse_transpose_coo) {
  std::vector<float> data = {0, -1, 0, 2, 0, 0, -3, 0, 4, 5, 0, 0};
  phi::CPUContext dev_ctx_cpu;
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
  dev_ctx_cpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());

  DenseTensor dense_x = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(
          DataType::FLOAT32, phi::make_ddim({3, 2, 2}), DataLayout::NCHW));
  memcpy(dense_x.data<float>(), data.data(), data.size() * sizeof(float));
  auto sparse_coo = sparse::DenseToCoo<float>(dev_ctx_cpu, dense_x, 3);
  auto sparse_out =
      sparse::TransposeCoo<float>(dev_ctx_cpu, sparse_coo, {2, 1, 0});
  DenseTensor dense_out = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(
          DataType::FLOAT32, phi::make_ddim({2, 2, 3}), DataLayout::NCHW));
  TransposeKernel<float>(dev_ctx_cpu, dense_x, {2, 1, 0}, &dense_out);

  // backward
  DenseTensor dense_grad_x = phi::EmptyLike<float>(dev_ctx_cpu, dense_out);
  TransposeGradKernel<float>(dev_ctx_cpu, dense_out, {2, 1, 0}, &dense_grad_x);
  SparseCooTensor sparse_grad_x;
  sparse::EmptyLikeCooKernel<float>(dev_ctx_cpu, sparse_coo, &sparse_grad_x);

  SparseCooTensor sparse_out_grad(
      sparse_coo.indices(), sparse_coo.values(), {2, 2, 3});
  sparse::TransposeCooGradKernel<float>(
      dev_ctx_cpu, sparse_out_grad, {2, 1, 0}, &sparse_grad_x);
}

TEST(DEV_API, sparse_transpose_csr_case1) {
  std::vector<float> data = {0, -1, 0, 2, 0, 0, -3, 0, 4, 5, 0, 0};
  phi::CPUContext dev_ctx_cpu;
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
  dev_ctx_cpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());

  DenseTensor dense_x = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(
          DataType::FLOAT32, phi::make_ddim({3, 2, 2}), DataLayout::NCHW));
  memcpy(dense_x.data<float>(), data.data(), data.size() * sizeof(float));
  auto sparse_csr = sparse::DenseToCsr<float>(dev_ctx_cpu, dense_x);

  auto sparse_out =
      sparse::TransposeCsr<float>(dev_ctx_cpu, sparse_csr, {2, 1, 0});
  DenseTensor dense_out = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(
          DataType::FLOAT32, phi::make_ddim({2, 2, 3}), DataLayout::NCHW));
  TransposeKernel<float>(dev_ctx_cpu, dense_x, {2, 1, 0}, &dense_out);

  // backward
  DenseTensor dense_grad_x = phi::EmptyLike<float>(dev_ctx_cpu, dense_out);
  TransposeGradKernel<float>(dev_ctx_cpu, dense_out, {2, 1, 0}, &dense_grad_x);
  SparseCsrTensor sparse_grad_x;
  sparse::EmptyLikeCsrKernel<float>(dev_ctx_cpu, sparse_csr, &sparse_grad_x);
  sparse::TransposeCsrGradKernel<float>(
      dev_ctx_cpu, sparse_out, {2, 1, 0}, &sparse_grad_x);
}

TEST(DEV_API, sparse_transpose_csr_case2) {
  std::vector<float> data = {0, -1, 0, 2, 0, 0, -3, 0, 4, 5, 0, 0};
  phi::CPUContext dev_ctx_cpu;
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
  dev_ctx_cpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());

  DenseTensor dense_x = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(
          DataType::FLOAT32, phi::make_ddim({3, 2, 2}), DataLayout::NCHW));
  memcpy(dense_x.data<float>(), data.data(), data.size() * sizeof(float));
  auto sparse_csr = sparse::DenseToCsr<float>(dev_ctx_cpu, dense_x);

  auto sparse_out =
      sparse::TransposeCsr<float>(dev_ctx_cpu, sparse_csr, {1, 2, 0});
  DenseTensor dense_out = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(
          DataType::FLOAT32, phi::make_ddim({2, 2, 3}), DataLayout::NCHW));
  TransposeKernel<float>(dev_ctx_cpu, dense_x, {1, 2, 0}, &dense_out);
}

TEST(DEV_API, sparse_transpose_csr_case3) {
  std::vector<float> data = {0, -1, 0, 2, 0, 0, -3, 0, 4, 5, 0, 0};
  phi::CPUContext dev_ctx_cpu;
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
  dev_ctx_cpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());

  DenseTensor dense_x = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(
          DataType::FLOAT32, phi::make_ddim({3, 4}), DataLayout::NCHW));
  memcpy(dense_x.data<float>(), data.data(), data.size() * sizeof(float));
  auto sparse_csr = sparse::DenseToCsr<float>(dev_ctx_cpu, dense_x);

  auto sparse_out =
      sparse::TransposeCsr<float>(dev_ctx_cpu, sparse_csr, {1, 0});
  DenseTensor dense_out = phi::Empty(
      dev_ctx_cpu,
      DenseTensorMeta(
          DataType::FLOAT32, phi::make_ddim({4, 3}), DataLayout::NCHW));
  TransposeKernel<float>(dev_ctx_cpu, dense_x, {1, 0}, &dense_out);
}

}  // namespace tests
}  // namespace phi