sparse_utils_kernel.cu 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"

17 18 19
#include <thrust/execution_policy.h>
#include <thrust/remove.h>

20
#include "paddle/phi/backends/gpu/gpu_context.h"
21
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
22
#include "paddle/phi/core/enforce.h"
23 24
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
25
#include "paddle/phi/core/visit_type.h"
Z
zhangkaihuo 已提交
26
#include "paddle/phi/kernels/funcs/math_function.h"
27
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
28

29
namespace phi {
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
namespace sparse {

template <typename T>
inline __device__ bool DevIsZero(const T* data, const int64_t cols) {
  const T zero = static_cast<T>(0);
  // TODO(zhangkaihuo): check the data is zero or not in parallen when cols > 1
  for (int64_t i = 0; i < cols; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

template <typename T>
__global__ void GetNonZeroNums(const T* dense_data,
                               const int rows,
                               const int cols,
                               int* non_zero_num,
                               int* temp_indexs) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  __shared__ int counter;
  if (threadIdx.x == 0) counter = 0;
  __syncthreads();

  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    int index = -1;
    // TODO(zhangkaihuo): when cols=1, vectorization can be used
    if (!DevIsZero(dense_data + i * cols, cols)) {
      // use reductions?
      atomicAdd(&counter, 1);
      index = i;
    }
    temp_indexs[i] = index;
  }
  __syncthreads();
  if (threadIdx.x == 0) {
    atomicAdd(non_zero_num, counter);
  }
}

template <typename T>
__global__ void GetNonZeroElementsAndIndices(const T* dense_data,
                                             const int64_t sparse_dim,
                                             const int64_t cols,
                                             const int64_t* x_dims,
                                             const int non_zero_num,
                                             const int* indexs,
                                             int64_t* indices,
                                             T* sparse_data) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t sparse_index = indexs[i];
    int64_t x_index = sparse_index;
    for (int64_t j = sparse_dim - 1; j >= 0; j--) {
      indices[j * non_zero_num + i] = sparse_index % x_dims[j];
      sparse_index /= x_dims[j];
    }

    for (int j = 0; j < cols; j++) {
      sparse_data[i * cols + j] = dense_data[x_index * cols + j];
    }
  }
}

template <typename T, typename Context>
96 97 98 99
void DenseToCooKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const int64_t sparse_dim,
                      SparseCooTensor* out) {
100 101
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
102 103 104 105 106 107
  PADDLE_ENFORCE_LE(sparse_dim,
                    x_dims.size(),
                    phi::errors::InvalidArgument(
                        "sparse_dim must be less than the size of x.dims()"));
  PADDLE_ENFORCE_GT(
      sparse_dim, 0, phi::errors::InvalidArgument("sparse_dim must be >0"));
108 109 110
  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];
111 112
  DenseTensor nums = phi::Empty<int32_t>(dev_ctx, {1});
  DenseTensor d_x_dims = phi::Empty<int64_t>(dev_ctx, {x_dims.size()});
113 114

  // 1. get numbers of non zero elements, and get the index of non zero elements
115 116 117
  int* nums_ptr = nums.data<int>();
  phi::backends::gpu::GpuMemsetAsync(
      nums_ptr, 0, sizeof(int), dev_ctx.stream());
118
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
119

120 121 122
  DenseTensor temp_indexs = phi::Empty<int32_t>(dev_ctx, {rows});
  int* temp_indexs_ptr = temp_indexs.data<int>();

123 124 125 126
  GetNonZeroNums<<<config.block_per_grid.x,
                   config.thread_per_block.x,
                   0,
                   dev_ctx.stream()>>>(
127
      x_data, rows, cols, nums_ptr, temp_indexs_ptr);
128

129 130 131 132 133 134 135 136 137 138 139
#ifdef PADDLE_WITH_HIP
  thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                 temp_indexs_ptr,
                 temp_indexs_ptr + rows,
                 -1);

  // 2. copy non_zero_num to host, copy x_dims to device
  int non_zero_num = 0;
140 141 142 143 144 145 146 147 148 149
  phi::backends::gpu::GpuMemcpyAsync(&non_zero_num,
                                     nums_ptr,
                                     sizeof(int),
                                     gpuMemcpyDeviceToHost,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(d_x_dims.data<int64_t>(),
                                     x_dims.Get(),
                                     x_dims.size() * sizeof(x_dims[0]),
                                     gpuMemcpyHostToDevice,
                                     dev_ctx.stream());
150 151 152

  dev_ctx.Wait();  // wait the copy

153 154
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
Z
zyfncg 已提交
155 156 157 158 159 160
  phi::DenseTensor indices = phi::Empty<int64_t>(
      dev_ctx, {sparse_dim, static_cast<int64_t>(non_zero_num)});
  int64_t* indices_data = indices.data<int64_t>();
  phi::DenseTensor values;
  values.Resize(values_dims);
  T* sparse_data = dev_ctx.template Alloc<T>(&values);
161 162

  // 3. calc indices by indexs and get values by indexs
163 164 165 166 167 168 169 170 171 172 173 174
  config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
  GetNonZeroElementsAndIndices<<<config.block_per_grid.x,
                                 config.thread_per_block.x,
                                 0,
                                 dev_ctx.stream()>>>(x_data,
                                                     sparse_dim,
                                                     cols,
                                                     d_x_dims.data<int64_t>(),
                                                     non_zero_num,
                                                     temp_indexs_ptr,
                                                     indices_data,
                                                     sparse_data);
175

176 177 178
  out->SetMember(indices, values, x_dims, true);
}

179 180
template <typename IntT>
__global__ void GetBatchSizes(const IntT* crows,
181 182
                              const int rows,
                              const int batchs,
183
                              IntT* batch_sizes) {
184 185 186 187 188 189
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  if (tid < batchs) {
    batch_sizes[tid] = crows[tid * (rows + 1) + rows];
  }
}

190 191 192 193 194
template <typename IntT>
__global__ void ConvertCsrCrowsToCooRows(const IntT* crows_ptr,
                                         const IntT* crows_offsets,
                                         IntT* rows_ptr,
                                         IntT* batch_ptr,
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
                                         const int rows) {
  const int b = blockIdx.y;
  const int64_t offset = crows_offsets ? crows_offsets[b] : 0;
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    for (int j = crows_ptr[b * (rows + 1) + i];
         j < crows_ptr[b * (rows + 1) + i + 1];
         j++) {
      rows_ptr[offset + j] = i;
      if (batch_ptr) {
        batch_ptr[offset + j] = b;
      }
    }
  }
}

211
template <typename T, typename IntT>
212 213 214
void CsrToCooGPUKernel(const GPUContext& dev_ctx,
                       const SparseCsrTensor& x,
                       SparseCooTensor* out) {
215
  const DDim& x_dims = x.dims();
216 217 218
  const int64_t non_zero_num = x.cols().numel();
  const auto& csr_crows = x.crows();
  const auto& csr_cols = x.cols();
219
  const auto& csr_values = x.values();
220 221
  const IntT* csr_crows_data = csr_crows.data<IntT>();
  const IntT* csr_cols_data = csr_cols.data<IntT>();
222 223 224 225 226 227 228 229 230
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

231 232 233 234 235 236
  DenseTensor indices = phi::Empty<IntT>(dev_ctx, {sparse_dim, non_zero_num});
  DenseTensor values = phi::EmptyLike<T, GPUContext>(dev_ctx, csr_values);
  DenseTensor offsets = phi::Empty<IntT>(dev_ctx, {batchs});
  IntT* coo_indices = indices.data<IntT>();
  IntT* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  IntT* coo_rows_data =
237
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
238 239 240
  IntT* coo_cols_data = coo_rows_data + non_zero_num;
  IntT* offsets_ptr = batchs == 1 ? nullptr : offsets.data<IntT>();
  T* coo_values_data = values.data<T>();
241 242

  if (batchs > 1) {
243
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
244
    GetBatchSizes<IntT><<<config.block_per_grid.x, config.thread_per_block.x>>>(
245 246 247 248 249 250 251 252 253 254 255 256
        csr_crows_data, rows, batchs, offsets_ptr);

#ifdef PADDLE_WITH_HIP
    thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
    thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                           offsets_ptr,
                           offsets_ptr + batchs,
                           offsets_ptr);
  }

257 258
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
  config.block_per_grid.y = batchs;
259 260 261 262 263 264 265 266 267 268 269 270 271 272
  ConvertCsrCrowsToCooRows<IntT>
      <<<config.block_per_grid, config.thread_per_block.x>>>(
          csr_crows_data, offsets_ptr, coo_rows_data, batch_ptr, rows);

  phi::backends::gpu::GpuMemcpyAsync(coo_cols_data,
                                     csr_cols_data,
                                     sizeof(IntT) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(coo_values_data,
                                     csr_values_data,
                                     sizeof(T) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
273 274 275 276

  out->SetMember(indices, values, x_dims, true);
}

277
template <typename T, typename Context>
278 279 280 281 282 283
void CsrToCooKernel(const Context& dev_ctx,
                    const SparseCsrTensor& x,
                    SparseCooTensor* out) {
  PD_VISIT_BASE_INTEGRAL_TYPES(x.crows().dtype(), "CsrToCooGPUKernel", ([&] {
                                 CsrToCooGPUKernel<T, data_t>(dev_ctx, x, out);
                               }));
284 285 286 287
}

template <typename IntT>
__global__ void GetBatchsOffset(const IntT* batchs_ptr,
Z
zhangkaihuo 已提交
288
                                const int batchs,
289
                                const int non_zero_num,
Z
zhangkaihuo 已提交
290
                                int* batchs_offset) {
291 292 293
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
Z
zhangkaihuo 已提交
294 295 296 297 298
      const int start = batchs_ptr[i];
      const int end = i == non_zero_num - 1 ? batchs : batchs_ptr[i + 1];
      for (int j = start; j < end; j++) {
        batchs_offset[j] = i + 1;
      }
299 300 301 302
    }
  }
}

303
template <typename IntT>
304
__global__ void ConvertCooRowsToCsrCrows(
Z
zhangkaihuo 已提交
305
    const int* batchs_offset,  // can be null if batchs = 1
306 307
    const IntT* coo_rows_data,
    IntT* csr_crows_data,
308 309 310 311 312
    const int rows,
    const int64_t non_zero_num) {
  const int b = blockIdx.y;
  int batch_non_zero_num =
      batchs_offset == nullptr ? non_zero_num : batchs_offset[b];
313
  IntT batch_start = 0;
314 315 316 317
  if (b > 0) {
    batch_start = batchs_offset[b - 1];
    batch_non_zero_num -= batch_start;
  }
Z
zhangkaihuo 已提交
318

319
  const IntT* coo_rows_ptr = coo_rows_data + batch_start;
320 321 322
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < batch_non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == 0) {
323
      for (IntT j = 0; j <= coo_rows_ptr[0]; j++) {
324 325 326
        csr_crows_data[b * (rows + 1) + j] = 0;
      }
    } else {
327
      for (IntT j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
328 329 330 331
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
    if (i == batch_non_zero_num - 1) {
332
      for (IntT i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1;
333 334 335 336 337
           i++) {
        csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
      }
    }
  }
Z
zhangkaihuo 已提交
338 339 340 341 342
  if (batch_non_zero_num == 0) {
    for (int i = tid; i < rows + 1; i += gridDim.x * blockDim.x) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
  }
343 344
}

345
template <typename T, typename IntT>
346 347 348
void CooToCsrGPUKernel(const GPUContext& dev_ctx,
                       const SparseCooTensor& x,
                       SparseCsrTensor* out) {
349 350 351 352
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
353
                    phi::errors::InvalidArgument(
354 355 356 357 358 359 360
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

361 362
  phi::DenseTensor crows = phi::Empty<IntT>(dev_ctx, {batchs * (rows + 1)});
  phi::DenseTensor cols = phi::Empty<IntT>(dev_ctx, {non_zero_num});
363
  phi::DenseTensor values = phi::EmptyLike<T, GPUContext>(dev_ctx, x.values());
364 365
  IntT* csr_crows_data = crows.data<IntT>();
  IntT* csr_cols_data = cols.data<IntT>();
366
  T* csr_values_data = values.data<T>();
367

368
  const auto& coo_indices = x.indices();
369
  const auto& coo_values = x.values();
370 371
  const IntT* batchs_ptr = coo_indices.data<IntT>();
  const IntT* coo_rows_data =
Z
zhangkaihuo 已提交
372
      x_dims.size() == 2 ? batchs_ptr : batchs_ptr + non_zero_num;
373
  const IntT* coo_cols_data = coo_rows_data + non_zero_num;
374 375
  const T* coo_values_data = coo_values.data<T>();

376
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
377
  if (batchs > 1) {
Z
zhangkaihuo 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390
    auto config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
    phi::DenseTensor batchs_offset = phi::Empty<int>(dev_ctx, {batchs});
    int* batchs_offset_ptr = batchs_offset.data<int>();
    phi::funcs::SetConstant<GPUContext, int> set_zero;
    // set zero if the nnz=0 of batchs[0]
    set_zero(dev_ctx, &batchs_offset, static_cast<IntT>(0));
    GetBatchsOffset<IntT><<<config.block_per_grid.x,
                            config.thread_per_block.x,
                            0,
                            dev_ctx.stream()>>>(
        batchs_ptr, batchs, non_zero_num, batchs_offset_ptr);

391
    config.block_per_grid.y = batchs;
392 393 394 395
    ConvertCooRowsToCsrCrows<IntT><<<config.block_per_grid,
                                     config.thread_per_block.x,
                                     0,
                                     dev_ctx.stream()>>>(
396 397
        batchs_offset_ptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  } else {
398 399 400 401
    ConvertCooRowsToCsrCrows<IntT><<<config.block_per_grid.x,
                                     config.thread_per_block.x,
                                     0,
                                     dev_ctx.stream()>>>(
402 403 404
        nullptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  }

405 406 407 408 409 410 411 412 413 414
  phi::backends::gpu::GpuMemcpyAsync(csr_cols_data,
                                     coo_cols_data,
                                     sizeof(IntT) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(csr_values_data,
                                     coo_values_data,
                                     sizeof(T) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
415
  out->SetMember(crows, cols, values, x_dims);
416 417
}

418
template <typename T, typename Context>
419 420 421 422 423 424
void CooToCsrKernel(const Context& dev_ctx,
                    const SparseCooTensor& x,
                    SparseCsrTensor* out) {
  PD_VISIT_BASE_INTEGRAL_TYPES(x.indices().dtype(), "CooToCsrGPUKernel", ([&] {
                                 CooToCsrGPUKernel<T, data_t>(dev_ctx, x, out);
                               }));
425 426
}

Z
zhangkaihuo 已提交
427
template <typename ValueT, typename IndicesT>
428 429 430 431 432 433 434
__global__ void KernelCooToDense(const IndicesT* indices,
                                 const int64_t* sparse_offsets,
                                 const ValueT* data,
                                 ValueT* dense_data,
                                 const IndicesT non_zero_num,
                                 const int64_t base_offset,
                                 const int64_t sparse_dim) {
Z
zhangkaihuo 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
      index += indices[j * non_zero_num + i] * sparse_offsets[j];
    }

    for (int j = 0; j < base_offset; j++) {
      dense_data[index * base_offset + j] = data[i * base_offset + j];
    }
  }
}

448
template <typename T, typename IntT>
449 450 451
void CooToDenseGPUKernel(const GPUContext& dev_ctx,
                         const SparseCooTensor& x,
                         DenseTensor* out) {
Z
zhangkaihuo 已提交
452 453
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
454
  const auto indices = x.indices();
455
  const auto values = x.values();
Z
zhangkaihuo 已提交
456 457 458 459 460 461 462 463 464
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
  const int64_t dense_dim = values.dims().size() - 1;

  const auto place = dev_ctx.GetPlace();
  const T* x_data = values.data<T>();
465 466
  dev_ctx.template Alloc<T>(out);

Z
zhangkaihuo 已提交
467
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
468 469 470 471 472 473 474 475 476 477 478
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

479 480 481 482 483 484 485 486 487
  DenseTensor d_sparse_offsets = Empty<int64_t>(dev_ctx, {sparse_dim});

  phi::backends::gpu::GpuMemcpyAsync(d_sparse_offsets.data<int64_t>(),
                                     sparse_offsets.data(),
                                     sparse_dim * sizeof(int64_t),
                                     gpuMemcpyHostToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemsetAsync(
      out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream());
Z
zhangkaihuo 已提交
488

489 490
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
Z
zhangkaihuo 已提交
491

492
  KernelCooToDense<T, IntT>
493 494 495
      <<<config.block_per_grid.x,
         config.thread_per_block.x,
         0,
496
         dev_ctx.stream()>>>(indices.data<IntT>(),
497 498 499 500 501 502
                             d_sparse_offsets.data<int64_t>(),
                             x_data,
                             out_data,
                             non_zero_num,
                             base_offset,
                             sparse_dim);
Z
zhangkaihuo 已提交
503 504
}

505
template <typename T, typename Context>
506 507 508
void CooToDenseKernel(const Context& dev_ctx,
                      const SparseCooTensor& x,
                      DenseTensor* out) {
Z
zhangkaihuo 已提交
509
  PD_VISIT_BASE_INTEGRAL_TYPES(
510 511
      x.indices().dtype(), "CooToDenseGPUKernel", ([&] {
        CooToDenseGPUKernel<T, data_t>(dev_ctx, x, out);
512 513 514
      }));
}

515
}  // namespace sparse
516
}  // namespace phi
517

518
PD_REGISTER_KERNEL(dense_to_coo,
519 520
                   GPU,
                   ALL_LAYOUT,
521
                   phi::sparse::DenseToCooKernel,
522 523
                   float,
                   double,
524
                   phi::dtype::float16,
525 526 527 528 529
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
530

531
PD_REGISTER_KERNEL(csr_to_coo,
532 533
                   GPU,
                   ALL_LAYOUT,
534
                   phi::sparse::CsrToCooKernel,
535 536
                   float,
                   double,
537
                   phi::dtype::float16,
538 539 540 541
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
542 543
                   int64_t,
                   bool) {}
544

545
PD_REGISTER_KERNEL(coo_to_csr,
546 547
                   GPU,
                   ALL_LAYOUT,
548
                   phi::sparse::CooToCsrKernel,
549 550
                   float,
                   double,
551
                   phi::dtype::float16,
552 553 554 555
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
556 557
                   int64_t,
                   bool) {}
558

559
PD_REGISTER_KERNEL(dense_to_csr,
560 561
                   GPU,
                   ALL_LAYOUT,
562
                   phi::sparse::DenseToCsrKernel,
563 564
                   float,
                   double,
565
                   phi::dtype::float16,
566 567 568 569 570
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
571

572
PD_REGISTER_KERNEL(coo_to_dense,
Z
zhangkaihuo 已提交
573 574
                   GPU,
                   ALL_LAYOUT,
575
                   phi::sparse::CooToDenseKernel,
Z
zhangkaihuo 已提交
576 577
                   float,
                   double,
578
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
579 580 581 582 583 584
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

585
PD_REGISTER_KERNEL(csr_to_dense,
Z
zhangkaihuo 已提交
586 587
                   GPU,
                   ALL_LAYOUT,
588
                   phi::sparse::CsrToDenseKernel,
Z
zhangkaihuo 已提交
589 590
                   float,
                   double,
591
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
592 593 594 595 596
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
597

598
PD_REGISTER_KERNEL(values_coo,
599 600
                   GPU,
                   ALL_LAYOUT,
601
                   phi::sparse::ValuesCooKernel,
602 603 604 605 606 607 608 609 610 611 612
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

613
PD_REGISTER_KERNEL(values_csr,
614 615
                   GPU,
                   ALL_LAYOUT,
616
                   phi::sparse::ValuesCsrKernel,
617 618 619 620 621 622 623 624
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}

PD_REGISTER_KERNEL(indices_coo,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::IndicesCooKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
640 641
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
642 643 644 645 646 647 648 649 650 651 652 653

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}