test_dist_fleet_ps5.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

T
tangwei12 已提交
17
import os
18
import unittest
P
pangyoki 已提交
19

T
tangwei12 已提交
20
import paddle
21

P
pangyoki 已提交
22
paddle.enable_static()
23

T
tangwei12 已提交
24 25 26 27
import paddle.fluid as fluid
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet

28 29 30 31 32 33 34 35 36 37 38 39
# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1
batch_size = 4


class TestPSPassWithBow(unittest.TestCase):
40

41
    def net(self):
42

43 44 45 46
        def get_acc(cos_q_nt, cos_q_pt, batch_size):
            cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
            cond = fluid.layers.cast(cond, dtype='float64')
            cond_3 = fluid.layers.reduce_sum(cond)
47 48 49 50 51 52
            acc = fluid.layers.elementwise_div(cond_3,
                                               fluid.layers.fill_constant(
                                                   shape=[1],
                                                   value=batch_size * 1.0,
                                                   dtype='float64'),
                                               name="simnet_acc")
53 54 55 56
            return acc

        def get_loss(cos_q_pt, cos_q_nt):
            loss_op1 = fluid.layers.elementwise_sub(
57 58 59 60
                fluid.layers.fill_constant_batch_size_like(input=cos_q_pt,
                                                           shape=[-1, 1],
                                                           value=margin,
                                                           dtype='float32'),
61 62 63
                cos_q_pt)
            loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
            loss_op3 = fluid.layers.elementwise_max(
64 65 66 67
                fluid.layers.fill_constant_batch_size_like(input=loss_op2,
                                                           shape=[-1, 1],
                                                           value=0.0,
                                                           dtype='float32'),
68 69 70 71 72 73 74 75
                loss_op2)
            avg_cost = fluid.layers.mean(loss_op3)
            return avg_cost

        is_distributed = False
        is_sparse = True

        # query
76 77 78 79
        q = fluid.layers.data(name="query_ids",
                              shape=[1],
                              dtype="int64",
                              lod_level=1)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        # embedding
        q_emb = fluid.layers.embedding(
            input=q,
            is_distributed=is_distributed,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr),
            is_sparse=is_sparse)
        q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
        # vsum
        q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
        q_ss = fluid.layers.softsign(q_sum)
        # fc layer after conv
        q_fc = fluid.layers.fc(
            input=q_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__q_fc__",
                learning_rate=base_lr))
        # label data
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        # pt
105 106 107 108
        pt = fluid.layers.data(name="pos_title_ids",
                               shape=[1],
                               dtype="int64",
                               lod_level=1)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        # embedding
        pt_emb = fluid.layers.embedding(
            input=pt,
            is_distributed=is_distributed,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr),
            is_sparse=is_sparse)
        pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
        # vsum
        pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
        pt_ss = fluid.layers.softsign(pt_sum)
        # fc layer
        pt_fc = fluid.layers.fc(
            input=pt_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
                learning_rate=base_lr),
            bias_attr=fluid.ParamAttr(name="__fc_b__"))
        # nt
133 134 135 136
        nt = fluid.layers.data(name="neg_title_ids",
                               shape=[1],
                               dtype="int64",
                               lod_level=1)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        # embedding
        nt_emb = fluid.layers.embedding(
            input=nt,
            is_distributed=is_distributed,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__tmp_",
                learning_rate=emb_lr),
            is_sparse=False)
        nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
        # vsum
        nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
        nt_ss = fluid.layers.softsign(nt_sum)
        # fc layer
        nt_fc = fluid.layers.fc(
            input=nt_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
                learning_rate=base_lr),
            bias_attr=fluid.ParamAttr(name="__fc_b__"))
        cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
        cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
        # loss
        avg_cost = get_loss(cos_q_pt, cos_q_nt)
        # acc
        acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
        return [avg_cost, acc, cos_q_pt]

    def test(self):
        endpoints = [
            "127.0.0.1:36004", "127.0.0.1:36005", "127.0.0.1:36006",
            "127.0.0.1:36007"
        ]

174 175 176 177
        role = role_maker.UserDefinedRoleMaker(current_id=0,
                                               role=role_maker.Role.SERVER,
                                               worker_num=2,
                                               server_endpoints=endpoints)
178 179 180 181

        fleet.init(role)
        loss, acc, _ = self.net()

T
tangwei12 已提交
182
        optimizer = fluid.optimizer.Adam(
183 184 185 186
            learning_rate=fluid.layers.exponential_decay(learning_rate=base_lr,
                                                         decay_steps=500,
                                                         decay_rate=0.969,
                                                         staircase=True))
T
tangwei12 已提交
187

T
tangwei12 已提交
188 189 190
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True

191 192 193 194 195 196
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(loss)


if __name__ == '__main__':
    unittest.main()