conv_cudnn_op.cu.cc 14.4 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14 15 16 17

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memory.h"
C
chengduoZH 已提交
18
#include "paddle/operators/conv_op.h"
武毅 已提交
19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/platform/assert.h"
#include "paddle/platform/cudnn_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

Q
qiaolongfei 已提交
31 32
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
    static_cast<size_t>(1024) * 1024 * 1024;
武毅 已提交
33 34 35 36 37 38

template <typename T>
class CudnnConvOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
39
                   "It must use CUDAPlace.");
武毅 已提交
40 41 42 43 44 45 46 47
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
48 49
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
50 51 52 53 54 55 56 57 58 59 60

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
61 62 63 64 65 66 67
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
68
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
69 70 71 72 73 74 75
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
    PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
76

C
chengduoZH 已提交
77 78 79 80 81 82
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
83 84

    int input_channels = input->dims()[1];
武毅 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
106

武毅 已提交
107 108
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
109
    int group_offset_out =
武毅 已提交
110
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
111 112 113 114 115 116 117 118 119 120
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    void* cudnn_workspace = nullptr;
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
Q
QI JUN 已提交
121 122
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
123 124 125 126 127 128 129 130 131 132

    PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
        workspace_size_limit, &algo));
    // get workspace size able to allocate
    PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
    // Allocate on GPU memory
D
dzhwinter 已提交
133
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
武毅 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv forward ---------------------
    T alpha = 1.0f, beta = 0.0f;
    for (int i = 0; i < groups; i++) {
      PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
          handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
          cudnn_filter_desc, filter_data + i * group_offset_filter,
          cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
          &beta, cudnn_output_desc, output_data + i * group_offset_out));
    }
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

template <typename T>
class CudnnConvGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
154
                   "It must use CUDAPlace.");
武毅 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
169 170
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
171 172 173 174 175 176 177 178 179

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
180 181 182 183 184 185 186
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
187
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
188 189 190 191 192 193 194
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
    PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
195

C
chengduoZH 已提交
196 197
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
198
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
199 200 201 202
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
203 204

    int input_channels = input->dims()[1];
武毅 已提交
205 206 207 208 209 210 211 212 213 214 215
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
216
    int output_grad_channels = filter->dims()[0];
武毅 已提交
217 218 219 220 221 222 223 224 225 226
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
227

武毅 已提交
228 229 230 231
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
232 233 234 235 236 237 238 239 240 241
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }

Q
QI JUN 已提交
242 243
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
244 245 246 247 248 249 250 251 252
    if (input_grad) {
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              handle, cudnn_filter_desc,
              // dyDesc: Handle to the previously initialized input differential
              // tensor descriptor.
              cudnn_output_grad_desc, cudnn_conv_desc,
              // dxDesc: Handle to the previously initialized output tensor
              // descriptor.
武毅 已提交
253
              cudnn_input_desc,
武毅 已提交
254 255 256 257 258
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &data_algo));
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
259
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc,
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &filter_algo));

      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    // ------------------- cudnn conv workspace ---------------------
    // Already on GPU
    void* cudnn_workspace = nullptr;
D
dzhwinter 已提交
280
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
武毅 已提交
281 282 283 284 285
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv backward data ---------------------
    T alpha = 1.0f, beta = 0.0f;
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
286 287
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
288 289 290 291 292
      for (int i = 0; i < groups; i++) {
        PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
            handle, &alpha, cudnn_filter_desc,
            filter_data + i * group_offset_filter, cudnn_output_grad_desc,
            output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
武毅 已提交
293 294
            cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
            input_grad_data + i * group_offset_in));
武毅 已提交
295 296 297 298 299
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
300
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
301 302 303 304 305
      for (int i = 0; i < groups; i++) {
        PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
            cudnn_conv_desc, filter_algo, cudnn_workspace,
武毅 已提交
306
            workspace_size_in_bytes, &beta, cudnn_filter_desc,
武毅 已提交
307 308 309 310 311 312 313 314 315 316 317
            filter_grad_data + i * group_offset_filter));
      }
    }
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

}  // namespace operators
}  // namespace paddle

D
dzhwinter 已提交
318 319 320 321
REGISTER_OP_KERNEL(conv2d, CUDNN, paddle::platform::CUDAPlace,
                   paddle::operators::CudnnConvOpKernel<float>,
                   paddle::operators::CudnnConvOpKernel<double>);

Q
QI JUN 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334
REGISTER_OP_CUDA_KERNEL(conv2d_cudnn,
                        paddle::operators::CudnnConvOpKernel<float>,
                        paddle::operators::CudnnConvOpKernel<double>);
REGISTER_OP_CUDA_KERNEL(conv2d_cudnn_grad,
                        paddle::operators::CudnnConvGradOpKernel<float>,
                        paddle::operators::CudnnConvGradOpKernel<double>);

REGISTER_OP_CUDA_KERNEL(conv3d_cudnn,
                        paddle::operators::CudnnConvOpKernel<float>,
                        paddle::operators::CudnnConvOpKernel<double>);
REGISTER_OP_CUDA_KERNEL(conv3d_cudnn_grad,
                        paddle::operators::CudnnConvGradOpKernel<float>,
                        paddle::operators::CudnnConvGradOpKernel<double>);