concat_op_npu.cc 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename T>
class ConcatNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    framework::LoDTensor* out = ctx.Output<framework::LoDTensor>("Out");
    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));
    auto axis = ctx.Attr<int>("axis");

    if (ctx.HasInput("AxisTensor")) {
      PADDLE_THROW(platform::errors::NotFound(
          "The AxisTensor is not supported on NPU now."));
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));

    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);

    std::vector<framework::Tensor> inputs;
    std::vector<std::string> names;
    for (size_t i = 0; i < ins.size(); ++i) {
      if (ins[i] && ins[i]->numel() > 0) {
        inputs.push_back(*ins[i]);
        names.push_back("x" + std::to_string(i));
      } else {
        continue;
      }
    }
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
L
Leo Chen 已提交
55 56 57 58 59
    NpuOpRunner runner{
        "ConcatD",
        {inputs},
        {*out},
        {{"concat_dim", axis}, {"N", static_cast<int>(inputs.size())}}};
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    runner.AddInputNames(names);
    runner.Run(stream);
  }
};

template <typename T>
class ConcatGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
    auto outs =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));

    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));

    auto axis = ctx.Attr<int>("axis");

    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));

    int offset = 0;
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    for (size_t j = 0; j < outs.size(); ++j) {
      // For stop gradient
      // get output tensor that the name is not kEmptyVarName
      if (out_var_names[j] != framework::kEmptyVarName &&
          outs[j]->numel() != 0UL) {
        outs[j]->mutable_data<T>(ctx.GetPlace());
        std::vector<int> offsets;
        std::vector<int> sizes;
        for (int dim = 0; dim < ins[j]->dims().size(); ++dim) {
          if (dim == axis) {
            offsets.push_back(offset);
            sizes.push_back(ins[j]->dims()[dim]);
          } else {
            offsets.push_back(0);
            sizes.push_back(ins[j]->dims()[dim]);
          }
        }
L
Leo Chen 已提交
106 107 108
        const auto& runner =
            NpuOpRunner("SliceD", {*out_grad}, {*outs[j]},
                        {{"offsets", offsets}, {"size", sizes}});
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        runner.Run(stream);
      }
      if (ins[j]->numel() != 0UL) {
        offset += ins[j]->dims()[axis];
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(concat, ops::ConcatNPUKernel<float>,
                       ops::ConcatNPUKernel<paddle::platform::float16>,
125 126 127
#ifdef PADDLE_WITH_ASCEND_INT64
                       ops::ConcatNPUKernel<int64_t>,
#endif
128 129 130 131
                       ops::ConcatNPUKernel<int>);

REGISTER_OP_NPU_KERNEL(concat_grad, ops::ConcatGradNPUKernel<float>,
                       ops::ConcatGradNPUKernel<paddle::platform::float16>,
132 133 134
#ifdef PADDLE_WITH_ASCEND_INT64
                       ops::ConcatGradNPUKernel<int64_t>,
#endif
135
                       ops::ConcatGradNPUKernel<int>);