miopen_helper.h 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <vector>

#include "paddle/fluid/framework/operator.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/macros.h"

// MIOPEN do not have epslion definition
#define CUDNN_BN_MIN_EPSILON 1e-05

DECLARE_bool(cudnn_deterministic);

namespace paddle {
namespace platform {
inline const char* miopenGetErrorString(miopenStatus_t status) {
  switch (status) {
    case miopenStatusSuccess:
      return "miopenStatusSuccess";
    case miopenStatusNotInitialized:
      return "miopenStatusNotInitialized";
    case miopenStatusAllocFailed:
      return "miopenStatusAllocFailed";
    case miopenStatusBadParm:
      return "miopenStatusBadParm";
    case miopenStatusInternalError:
      return "miopenStatusInternalError";
    case miopenStatusInvalidValue:
      return "miopenStatusInvalidValue";
    case miopenStatusUnknownError:
      return "miopenStatusUnknownError";
    case miopenStatusNotImplemented:
      return "miopenStatusNotImplemented";
    default:
      return "Unknown miopen error number";
  }
}

// no use, but will have compiling error if not defined
#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
  kNDHWC,  // add, liyamei
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kMaximumDeterministic,
  kAverageExclusive,
  kAverageInclusive,
};

enum class ActivationMode {
  kNone,  // activation identity
  kSigmoid,
  kRelu,
  kRelu6,
  kReluX,
  kTanh,
  kBandPass,
};

inline miopenPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return miopenPoolingMax;
    case PoolingMode::kAverageExclusive:
      return miopenPoolingAverage;
    case PoolingMode::kAverageInclusive:
      return miopenPoolingAverageInclusive;
    case PoolingMode::kMaximum:
      return miopenPoolingMax;
    default:
      PADDLE_THROW(
          platform::errors::Unimplemented("Unexpected MIOPEN pooling mode."));
  }
}

inline ActivationMode StringToActivationMode(const std::string& str) {
  if (str == "identity") {
    return ActivationMode::kNone;
  } else if (str == "sigmoid") {
    return ActivationMode::kSigmoid;
  } else if (str == "relu") {
    return ActivationMode::kRelu;
  } else if (str == "relu6") {
    return ActivationMode::kRelu6;
  } else if (str == "relux") {
    return ActivationMode::kReluX;
  } else if (str == "tanh") {
    return ActivationMode::kTanh;
  } else if (str == "bandpass") {
    return ActivationMode::kBandPass;
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unknown MIOPEN activation string: %s.", str));
  }
}

template <typename T>
class CudnnDataType;

template <>
class CudnnDataType<float16> {
 public:
  static const miopenDataType_t type = miopenHalf;
  // The scaling param type is float for HALF and FLOAT tensors
  using ScalingParamType = const float;
  using BatchNormParamType = float;
  static ScalingParamType* kOne() {
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
};

template <>
class CudnnDataType<bfloat16> {
 public:
  static const miopenDataType_t type = miopenBFloat16;
  // The scaling param type is float for HALF and FLOAT tensors
  using ScalingParamType = const float;
  using BatchNormParamType = float;
  static ScalingParamType* kOne() {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
};

template <>
class CudnnDataType<float> {
 public:
  static const miopenDataType_t type = miopenFloat;
  using ScalingParamType = const float;
  using BatchNormParamType = float;
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
};

inline miopenTensorFormat_t GetCudnnTensorFormat(const DataLayout& order) {
  switch (order) {
    case DataLayout::kNHWC:
      return MIOPEN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return MIOPEN_TENSOR_NCHW;
    case DataLayout::kNCDHW:
      return MIOPEN_TENSOR_NCHW;
    case DataLayout::kNDHWC:
      return MIOPEN_TENSOR_NHWC;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "MIOPEN has no equivalent dataLayout for input order."));
  }
  return MIOPEN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
196
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreateTensorDescriptor(&desc_));
197 198
  }
  ~ScopedTensorDescriptor() PADDLE_MAY_THROW {
199
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyTensorDescriptor(desc_));
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  }

  inline miopenTensorDescriptor_t descriptor(const miopenTensorFormat_t format,
                                             const miopenDataType_t type,
                                             const std::vector<int>& dims,
                                             const int groups = 1) {
    // the format is not used now, will add later
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    // Update tensor descriptor dims setting if groups > 1
    // NOTE: Here, Assume using NCHW or NCDHW order
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }

    // MIOPEN ONLY support data layout of NCHW
220 221
    PADDLE_ENFORCE_EQ(format,
                      MIOPEN_TENSOR_NCHW,
222 223 224
                      platform::errors::InvalidArgument(
                          "format should ONLY be NCHW in MIOPEN."));
    if (dims.size() == 4) {
225
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetTensorDescriptor(
226 227 228
          desc_,
          type,
          dims_with_group.size(),
229 230 231
          const_cast<int*>(dims_with_group.data()),
          const_cast<int*>(strides.data())));
    } else if (dims.size() == 5) {
232
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetTensorDescriptor(
233 234 235
          desc_,
          type,
          dims_with_group.size(),
236 237 238 239 240 241 242 243 244 245
          const_cast<int*>(dims_with_group.data()),
          const_cast<int*>(strides.data())));
    }
    return desc_;
  }

  template <typename T>
  inline miopenTensorDescriptor_t descriptor(const DataLayout& order,
                                             const std::vector<int>& dims,
                                             const int groups = 1) {
246 247
    return descriptor(
        GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims, groups);
248 249 250 251 252
  }

  inline miopenTensorDescriptor_t descriptor(const miopenDataType_t miopen_type,
                                             const std::vector<int>& dim,
                                             const std::vector<int>& stride) {
253 254 255 256 257 258
    PADDLE_ENFORCE_GPU_SUCCESS(
        dynload::miopenSetTensorDescriptor(desc_,
                                           miopen_type,
                                           dim.size(),
                                           const_cast<int*>(dim.data()),
                                           const_cast<int*>(stride.data())));
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    return desc_;
  }

  template <typename T>
  inline miopenTensorDescriptor_t descriptor(const std::vector<int>& dim,
                                             const std::vector<int>& stride) {
    return descriptor(CudnnDataType<T>::type, dim, stride);
  }

  inline miopenTensorDescriptor_t desc() { return desc_; }

 private:
  miopenTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedDropoutDescriptor {
 public:
  ScopedDropoutDescriptor() {
278
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreateDropoutDescriptor(&desc_));
279 280
  }
  ~ScopedDropoutDescriptor() PADDLE_MAY_THROW {
281
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyDropoutDescriptor(desc_));
282 283 284 285 286 287
  }

  inline miopenDropoutDescriptor_t descriptor(const miopenHandle_t& handle,
                                              const platform::Place& place,
                                              bool initialized,
                                              float dropout_prob_,
288
                                              phi::DenseTensor* dropout_state_,
289 290
                                              int seed,
                                              size_t state_size) {
291
    if (dropout_state_ == nullptr) {  // for no dropout or test
292 293 294 295 296 297 298 299 300 301
      PADDLE_ENFORCE_GPU_SUCCESS(
          dynload::miopenSetDropoutDescriptor(desc_,
                                              handle,
                                              0 /* dropout */,
                                              nullptr,
                                              0 /* state_size */,
                                              0 /* seed */,
                                              false,
                                              false,
                                              MIOPEN_RNG_PSEUDO_XORWOW));
302 303 304 305
      return desc_;
    }
    auto* dropout_state_data = dropout_state_->data<uint8_t>();
    if (!initialized) {
306 307 308 309 310 311 312 313 314 315
      PADDLE_ENFORCE_GPU_SUCCESS(
          dynload::miopenSetDropoutDescriptor(desc_,
                                              handle,
                                              dropout_prob_,
                                              dropout_state_data,
                                              state_size,
                                              seed,
                                              false,
                                              false,
                                              MIOPEN_RNG_PSEUDO_XORWOW));
316 317 318
    } else {
      auto dropout_state_dims = dropout_state_->dims();
      state_size = dropout_state_dims[0];
319 320 321 322 323 324 325 326 327 328
      PADDLE_ENFORCE_GPU_SUCCESS(
          dynload::miopenRestoreDropoutDescriptor(desc_,
                                                  handle,
                                                  dropout_prob_,
                                                  dropout_state_data,
                                                  state_size,
                                                  0,
                                                  false,
                                                  false,
                                                  MIOPEN_RNG_PSEUDO_XORWOW));
329 330 331 332 333 334 335 336 337 338 339 340 341
    }
    return desc_;
  }
  inline miopenDropoutDescriptor_t desc() { return desc_; }

 private:
  miopenDropoutDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedDropoutDescriptor);
};

class ScopedRNNDescriptor {
 public:
  ScopedRNNDescriptor() {
342
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreateRNNDescriptor(&desc_));
343 344
  }
  ~ScopedRNNDescriptor() PADDLE_MAY_THROW {
345
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyRNNDescriptor(desc_));
346 347 348 349 350 351 352 353 354 355 356 357
  }

  inline miopenRNNDescriptor_t desc() { return desc_; }

 private:
  miopenRNNDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedRNNDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
358
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreateTensorDescriptor(&desc_));
359 360
  }
  ~ScopedFilterDescriptor() PADDLE_MAY_THROW {
361
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyTensorDescriptor(desc_));
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  }

  inline miopenTensorDescriptor_t descriptor(const miopenTensorFormat_t format,
                                             const miopenDataType_t type,
                                             const std::vector<int>& kernel,
                                             const int groups = 1) {
    // filter layout: MCHW(MCDHW), where M is the number of
    // output image channels, C is the number of input image channels,
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
    std::vector<int> stride_dim(kernel_with_group.size());
    stride_dim.push_back(1);
    for (int k = kernel_with_group.size() - 2; k >= 0; k--) {
      stride_dim[k] = stride_dim[k + 1] * kernel_with_group[k + 1];
    }
382
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetTensorDescriptor(
383 384 385
        desc_,
        type,
        kernel_with_group.size(),
386 387 388 389 390 391 392 393 394
        const_cast<int*>(kernel_with_group.data()),
        const_cast<int*>(stride_dim.data())));
    return desc_;
  }

  template <typename T>
  inline miopenTensorDescriptor_t descriptor(const DataLayout& order,
                                             const std::vector<int>& kernel,
                                             const int groups = 1) {
395 396
    return descriptor(
        GetCudnnTensorFormat(order), CudnnDataType<T>::type, kernel, groups);
397 398 399 400 401 402 403 404 405 406 407 408
  }

  inline miopenTensorDescriptor_t desc() { return desc_; }

 private:
  miopenTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
409
    PADDLE_ENFORCE_GPU_SUCCESS(
410 411 412
        dynload::miopenCreateConvolutionDescriptor(&desc_));
  }
  ~ScopedConvolutionDescriptor() PADDLE_MAY_THROW {
413
    PADDLE_ENFORCE_GPU_SUCCESS(
414 415 416 417
        dynload::miopenDestroyConvolutionDescriptor(desc_));
  }

  inline miopenConvolutionDescriptor_t descriptor(
418 419 420 421 422 423
      miopenDataType_t type,
      const std::vector<int>& pads,
      const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(),
                      strides.size(),
424 425 426
                      platform::errors::InvalidArgument(
                          "The size of pads and strides should be equal. But "
                          "received size of pads is %d, size of strides is %d.",
427 428
                          pads.size(),
                          strides.size()));
429
    PADDLE_ENFORCE_EQ(
430 431
        pads.size(),
        dilations.size(),
432 433 434
        platform::errors::InvalidArgument(
            "The size of pads and dilations should be equal. But received size "
            "of pads is %d, size of dilations is %d.",
435 436
            pads.size(),
            dilations.size()));
437
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenInitConvolutionNdDescriptor(
438 439 440 441 442
        desc_,
        pads.size(),
        const_cast<int*>(pads.data()),
        const_cast<int*>(strides.data()),
        const_cast<int*>(dilations.data()),
443 444 445 446 447 448
        miopenConvolution));
    return desc_;
  }

  template <typename T>
  inline miopenConvolutionDescriptor_t descriptor(
449 450
      const std::vector<int>& pads,
      const std::vector<int>& strides,
451 452 453 454 455 456 457 458 459 460 461 462
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  miopenConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
463
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreatePoolingDescriptor(&desc_));
464 465
  }
  ~ScopedPoolingDescriptor() PADDLE_MAY_THROW {
466
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyPoolingDescriptor(desc_));
467 468 469 470 471 472
  }

  inline miopenPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                              const std::vector<int>& kernel,
                                              const std::vector<int>& pads,
                                              const std::vector<int>& strides) {
473 474
    PADDLE_ENFORCE_EQ(kernel.size(),
                      pads.size(),
475 476 477
                      platform::errors::InvalidArgument(
                          "The size of kernel and pads should be equal. But "
                          "received size of kernel is %d, size of pads is %d.",
478 479
                          kernel.size(),
                          pads.size()));
480
    PADDLE_ENFORCE_EQ(
481 482
        kernel.size(),
        strides.size(),
483 484 485
        platform::errors::InvalidArgument(
            "The size of kernel and strides should be equal. But "
            "received size of kernel is %d, size of strides is %d.",
486 487
            kernel.size(),
            strides.size()));
488
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetNdPoolingDescriptor(
489 490 491 492 493
        desc_,
        GetPoolingMode(mode),
        kernel.size(),
        const_cast<int*>(kernel.data()),
        const_cast<int*>(pads.data()),
R
ronnywang 已提交
494
        const_cast<int*>(strides.data())));
495 496 497 498 499 500 501 502 503 504 505
    return desc_;
  }

 private:
  miopenPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

class ScopedActivationDescriptor {
 public:
  ScopedActivationDescriptor() {
506
    PADDLE_ENFORCE_GPU_SUCCESS(
507 508 509
        dynload::miopenCreateActivationDescriptor(&desc_));
  }
  ~ScopedActivationDescriptor() PADDLE_MAY_THROW {
510
    PADDLE_ENFORCE_GPU_SUCCESS(
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        dynload::miopenDestroyActivationDescriptor(desc_));
  }

  template <typename T>
  inline miopenActivationDescriptor_t descriptor(
      const std::string& act, double value_max = static_cast<double>(0.)) {
    double relu_ceiling = 0.0;
    ActivationMode activation_mode = StringToActivationMode(act);
    miopenActivationMode_t mode;
    switch (activation_mode) {
      case ActivationMode::kNone:
        mode = miopenActivationPASTHRU;
        break;
      case ActivationMode::kRelu6:
        relu_ceiling = 6.0;
        mode = miopenActivationCLIPPEDRELU;
        break;
      case ActivationMode::kReluX:
        relu_ceiling = value_max;
        mode = miopenActivationCLIPPEDRELU;
        break;
      case ActivationMode::kRelu:
        mode = miopenActivationRELU;
        break;
      case ActivationMode::kSigmoid:
        mode = miopenActivationLOGISTIC;
        break;
      case ActivationMode::kTanh:
        mode = miopenActivationTANH;
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unrecognized MIOPEN activation mode: %d.",
            static_cast<int>(activation_mode)));
    }
546
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetActivationDescriptor(
547 548 549 550 551 552 553 554 555 556
        desc_, mode, relu_ceiling, 0.0, 0.0));
    return desc_;
  }

 private:
  miopenActivationDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedActivationDescriptor);
};

inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
557 558
  bool use_cudnn = paddle::platform::is_gpu_place(ctx.GetPlace()) &&
                   ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn");
559 560
#ifdef PADDLE_WITH_HIP
  if (use_cudnn) {
L
Leo Chen 已提交
561
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
562 563 564 565 566 567 568 569 570
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

class ScopedCTCLossDescriptor {
 public:
  ScopedCTCLossDescriptor() {
571
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreateCTCLossDescriptor(&desc_));
572 573
  }
  ~ScopedCTCLossDescriptor() PADDLE_MAY_THROW {
574
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyCTCLossDescriptor(desc_));
575 576 577 578
  }

  template <typename T>
  inline miopenCTCLossDescriptor_t descriptor() {
579
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetCTCLossDescriptor(
580 581 582 583 584 585 586 587 588 589 590
        desc_, CudnnDataType<T>::type, 0, false));
    return desc_;
  }

 private:
  miopenCTCLossDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedCTCLossDescriptor);
};

}  // namespace platform
}  // namespace paddle