test_inplace.py 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17 18 19 20 21 22
import numpy as np

import paddle


class TestInplace(unittest.TestCase):
23
    def test_forward_version(self):
24 25 26 27 28 29 30
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32))
            self.assertEqual(var.inplace_version, 0)

            var[0] = 1.1
            self.assertEqual(var.inplace_version, 1)

31
            paddle.assign(paddle.ones(shape=[3]), var)
32 33 34 35 36 37 38 39

            # NOTE(liym27): assign(input, output) is an inplace operation for output.
            # There is inplace-related processing for api assign, var.inplace_version should be 2 not 1.
            self.assertEqual(var.inplace_version, 2)

            var[2] = 3
            self.assertEqual(var.inplace_version, 3)

40
    def test_backward_error(self):
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            var_b[1:2] = 3.3  # var_b is modified inplace after using it

            var_d = var_b**2

            loss = paddle.nn.functional.relu(var_c + var_d)
56
            with self.assertRaisesRegex(
57 58 59 60 61
                RuntimeError,
                "received tensor_version:{} != wrapper_version_snapshot:{}".format(
                    1, 0
                ),
            ):
62
                loss.backward()
63

64
    def test_backward_success_1(self):
65 66 67 68 69 70 71 72 73 74 75 76 77 78
        # var_b is modified inplace before using it, the inplace operator doesn't result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2
            var_b[1:2] = 3  # var_b is modified inplace before using it

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            loss = var_c.sum()
            loss.backward()

79
    def test_backward_success_2(self):
80 81 82 83 84 85 86 87 88 89
        # Although var_b is modified inplace after using it, it does not used in gradient computation.
        # The inplace operator doesn't result in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            var_b[1:2] = 3  # var_b is modified inplace before using it

90 91 92
            var_c = (
                var_b + var_b
            )  # Here, the grad op of sum doesn't use the value of var_b
93 94 95 96 97 98 99
            loss = var_c.sum()

            var_b[1:2] = 3  # var_b is modified inplace after using it

            loss.backward()


100 101 102
class TestDygraphInplace(unittest.TestCase):
    def setUp(self):
        self.init_data()
103
        self.set_np_compare_func()
104 105

    def init_data(self):
106
        self.input_var_numpy = np.random.uniform(-5, 5, [10, 20, 1])
107 108
        self.dtype = "float32"

109 110 111
    def set_np_compare_func(self):
        self.np_compare = np.array_equal

112 113 114 115 116 117
    def non_inplace_api_processing(self, var):
        return paddle.squeeze(var)

    def inplace_api_processing(self, var):
        return paddle.squeeze_(var)

118
    def test_inplace_api(self):
119 120 121 122
        var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
        inplace_var = self.inplace_api_processing(var)
        self.assertTrue(id(var) == id(inplace_var))

123
        inplace_var[0] = 2.0
124
        np.testing.assert_array_equal(var.numpy(), inplace_var.numpy())
125

126
    def test_forward_version(self):
127 128 129 130 131 132 133
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            self.assertEqual(var.inplace_version, 0)

            inplace_var = self.inplace_api_processing(var)
            self.assertEqual(var.inplace_version, 1)

134
            inplace_var[0] = 2.0
135 136 137 138 139
            self.assertEqual(var.inplace_version, 2)

            inplace_var = self.inplace_api_processing(inplace_var)
            self.assertEqual(var.inplace_version, 3)

140
    def test_leaf_inplace_var_error(self):
141 142 143 144 145 146 147 148 149
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var.stop_gradient = False

            def leaf_inplace_error():
                self.inplace_api_processing(var)

            self.assertRaises(ValueError, leaf_inplace_error)

150
    def test_backward_error(self):
151 152 153 154 155 156 157 158 159 160 161 162 163
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            self.inplace_api_processing(var_b)

            loss = paddle.nn.functional.relu(var_c)
164
            with self.assertRaisesRegex(
165 166 167 168 169
                RuntimeError,
                "received tensor_version:{} != wrapper_version_snapshot:{}".format(
                    1, 0
                ),
            ):
170
                loss.backward()
171

172
    def test_backward_success_1(self):
173 174 175 176 177 178 179 180 181
        # var_b is modified inplace before using it, the inplace operator doesn't result
        # in incorrect gradient computation.
        grad_var_a, grad_var_a_inplace = 0, 1
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2
            var_c = self.inplace_api_processing(
182 183
                var_b
            )  # var_b is modified inplace before using it
184 185 186 187 188

            # Here, the gradient computation will use the value of var_b
            var_d = var_c**2
            loss = var_d.sum()
            loss.backward()
189
            grad_var_a_inplace = var_a.grad.numpy()
190 191 192 193 194 195 196 197 198 199

        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2
            var_c = self.non_inplace_api_processing(var_b)
            var_d = var_c**2
            loss = var_d.sum()
            loss.backward()
200
            grad_var_a = var_a.grad.numpy()
201

202
        self.assertTrue(self.np_compare(grad_var_a_inplace, grad_var_a))
203

204
    def test_backward_success_2(self):
205 206 207 208 209 210 211 212 213 214
        # Although var_b is modified inplace after using it, it does not used in gradient computation.
        # The inplace operator doesn't result in incorrect gradient computation.
        grad_var_a, grad_var_a_inplace = 0, 1
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            var_c = self.inplace_api_processing(
215 216
                var_b
            )  # var_b is modified inplace before using it
217

218 219 220
            var_d = (
                var_c + var_c
            )  # Here, the grad op of sum doesn't use the value of var_b
221 222 223
            loss = var_d.sum()

            loss.backward()
224
            grad_var_a_inplace = var_a.grad.numpy()
225 226 227 228 229 230 231

        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

232
            var_c = self.non_inplace_api_processing(var_b)
233

234 235 236
            var_d = (
                var_c + var_c
            )  # Here, the grad op of sum doesn't use the value of var_b
237 238 239
            loss = var_d.sum()

            loss.backward()
240
            grad_var_a = var_a.grad.numpy()
241
        np.testing.assert_array_equal(grad_var_a_inplace, grad_var_a)
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259


class TestDygraphInplaceUnsqueeze(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.unsqueeze(var, -1)

    def inplace_api_processing(self, var):
        return paddle.unsqueeze_(var, -1)


class TestDygraphInplaceReshape(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.reshape(var, [-1])

    def inplace_api_processing(self, var):
        return paddle.reshape_(var, [-1])


260 261
class TestDygraphInplaceReshapeTensor(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
262
        shape = paddle.to_tensor([-1])
263 264 265
        return paddle.reshape(var, shape)

    def inplace_api_processing(self, var):
266
        shape = paddle.to_tensor([-1])
267 268 269
        return paddle.reshape_(var, shape)


270 271 272 273 274 275 276 277
class TestDygraphInplaceFlatten(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.flatten()

    def inplace_api_processing(self, var):
        return var.flatten_()


278 279 280 281 282 283 284
class TestDygraphInplaceScatter(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.array([[1, 1], [2, 2], [3, 3]])
        self.dtype = "float32"

    def non_inplace_api_processing(self, var):
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
285 286 287
        updates = paddle.to_tensor(
            [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32'
        )
288 289 290 291 292

        return paddle.scatter(var, index, updates, overwrite=False)

    def inplace_api_processing(self, var):
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
293 294 295
        updates = paddle.to_tensor(
            [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32'
        )
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

        return paddle.scatter_(var, index, updates, overwrite=False)


class TestDygraphInplaceElu(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.elu(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.elu_(var)


class TestDygraphInplaceRelu(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.relu(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.relu_(var)


class TestDygraphInplaceSoftmax(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.softmax(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.softmax_(var)


class TestDygraphInplaceTanh(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.tanh(var)

    def inplace_api_processing(self, var):
        return paddle.tanh_(var)


332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
class TestDygraphInplaceCeil(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.ceil()

    def inplace_api_processing(self, var):
        return var.ceil_()


class TestDygraphInplaceFloor(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.floor()

    def inplace_api_processing(self, var):
        return var.floor_()


class TestDygraphInplaceExp(TestDygraphInplace):
    def set_np_compare_func(self):
        self.np_compare = np.allclose

    def non_inplace_api_processing(self, var):
        return var.exp()

    def inplace_api_processing(self, var):
        return var.exp_()


class TestDygraphInplaceReciprocal(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.reciprocal()

    def inplace_api_processing(self, var):
        return var.reciprocal_()


class TestDygraphInplaceRound(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.round()

    def inplace_api_processing(self, var):
        return var.round_()


class TestDygraphInplaceSqrt(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.random.uniform(0, 5, [10, 20, 1])
        self.dtype = "float32"

    def non_inplace_api_processing(self, var):
        return var.sqrt()

    def inplace_api_processing(self, var):
        return var.sqrt_()


class TestDygraphInplaceRsqrt(TestDygraphInplaceSqrt):
    def non_inplace_api_processing(self, var):
        return var.rsqrt()

    def inplace_api_processing(self, var):
        return var.rsqrt_()


class TestDygraphInplaceClip(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.clip(0.6, 1.5)

    def inplace_api_processing(self, var):
        return var.clip_(0.6, 1.5)


class TestDygraphInplaceScale(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.scale(scale=2.0, bias=3.0)

    def inplace_api_processing(self, var):
        return var.scale_(scale=2.0, bias=3.0)


class TestDygraphInplaceAdd(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.random.rand(2, 3, 4)
        self.dtype = "float32"
415
        self.input_var_numpy_2 = np.random.rand(2, 3, 4).astype(self.dtype)
416 417

    def non_inplace_api_processing(self, var):
418 419
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.add(input_var_2)
420 421

    def inplace_api_processing(self, var):
422 423
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.add_(input_var_2)
424 425 426 427


class TestDygraphInplaceSubtract(TestDygraphInplaceAdd):
    def non_inplace_api_processing(self, var):
428 429
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.subtract(input_var_2)
430 431

    def inplace_api_processing(self, var):
432 433
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.subtract_(input_var_2)
434 435


436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
class TestDygraphInplaceRemainder(TestDygraphInplaceAdd):
    def non_inplace_api_processing(self, var):
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.remainder(input_var_2)

    def inplace_api_processing(self, var):
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.remainder_(input_var_2)

    def test_leaf_inplace_var_error(self):
        pass

    def test_backward_error(self):
        pass

    def test_backward_success_1(self):
        pass

    def test_backward_success_2(self):
        pass


458
class TestLossIsInplaceVar(unittest.TestCase):
459
    def test_loss_is_inplace_var(self):
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones((2, 2))
            var_a.stop_gradient = False

            var_b = var_a * 2
            loss = var_b.tanh_()

            loss.backward()
            inplace_grad_var_a = var_a.grad.numpy()

        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones((2, 2))
            var_a.stop_gradient = False

            var_b = var_a * 2
            loss = var_b.tanh()

            loss.backward()
            grad_var_a = var_a.grad.numpy()

480
        np.testing.assert_array_equal(inplace_grad_var_a, grad_var_a)
481 482


483
class TestContinuouslyInplace(unittest.TestCase):
484
    def test_continuously_inplace(self):
485 486 487 488 489 490 491 492 493 494 495
        a = paddle.rand([2, 3])
        a.stop_gradient = False
        b = a * 2

        b.reshape_([-1])
        b.reshape_([2, 3])
        b.reshape_([-1])

        b.backward()


496 497
class TestGetitemBeforeInplace(unittest.TestCase):
    def test_getitem_before_inplace(self):
498 499 500 501 502 503 504 505 506
        a = paddle.ones(shape=[4, 2, 3], dtype="float32")
        a.stop_gradient = False
        b = a**2
        b[0] = 3
        # getitem has no_need_buffer input
        c = b[0:2]
        loss = c.sum()
        b[1] = 2
        loss.backward()
507 508


509 510
if __name__ == '__main__':
    unittest.main()