test_gru_rnn_op.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import random
import sys
17 18
import unittest

19
import numpy as np
W
wanghuancoder 已提交
20
from eager_op_test import OpTest
21

22
import paddle
23
from paddle.fluid import core
24

L
liulinduo 已提交
25
sys.path.append("../../../../../test/rnn")
26
from convert import get_params_for_net
27
from rnn_numpy import GRU
28

29 30 31 32 33
random.seed(2)
np.set_printoptions(threshold=np.inf)
paddle.enable_static()


W
wanghuancoder 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def rnn_wrapper(
    Input,
    PreState,
    WeightList=None,
    SequenceLength=None,
    dropout_prob=0.0,
    is_bidirec=False,
    input_size=10,
    hidden_size=100,
    num_layers=1,
    mode="LSTM",
    seed=0,
    is_test=False,
):
    dropout_state_in = paddle.Tensor()
    return paddle._C_ops.rnn(
        Input,
        [PreState],
        WeightList,
        SequenceLength,
        dropout_state_in,
        dropout_prob,
        is_bidirec,
        input_size,
        hidden_size,
        num_layers,
        mode,
        seed,
        is_test,
    )


66 67 68 69 70
class TestGRUOp(OpTest):
    def get_weight_names(self):
        weight_names = []
        for i in range(self.num_layers):
            for j in range(0, 2 * self.direction_num):
71
                weight_names.append(f"{i}.weight_{j}")
72 73
        for i in range(self.num_layers):
            for j in range(0, 2 * self.direction_num):
74
                weight_names.append(f"{i}.bias_{j}")
75 76 77 78
        return weight_names

    def setUp(self):
        self.op_type = "rnn"
W
wanghuancoder 已提交
79 80 81 82
        self.python_api = rnn_wrapper
        self.python_out_sig = ["Out", "DropoutState", "State"]
        self.python_out_sig_sub_name = {"State": ["last_hidden"]}

R
ronnywang 已提交
83
        self.dtype = "float32" if core.is_compiled_with_rocm() else "float64"
84 85 86 87 88
        self.sequence_length = (
            None
            if core.is_compiled_with_rocm()
            else np.array([12, 11, 10, 9, 8, 7, 6, 5], dtype=np.int32)
        )
89 90 91 92
        self.num_layers = 1
        self.is_bidirec = False
        self.is_test = False
        self.mode = "GRU"
93
        self.dropout = 0.0
94 95 96 97 98 99 100 101 102
        seq_length = 12
        batch_size = 8
        input_size = 4
        self.hidden_size = 2
        self.set_attrs()

        self.direction_num = 2 if self.is_bidirec else 1
        direction = "bidirectional" if self.is_bidirec else "forward"

103 104 105
        input = np.random.uniform(
            low=-0.1, high=0.1, size=(seq_length, batch_size, input_size)
        ).astype(self.dtype)
106 107 108 109 110 111 112

        if self.sequence_length is not None:
            input[3][1:][:] = 0
            input[4][2:][:] = 0
            input[2][3:][:] = 0
            input[1][4:][:] = 0

113 114 115 116 117 118 119 120 121
        rnn1 = GRU(
            input_size,
            self.hidden_size,
            num_layers=self.num_layers,
            time_major=True,
            direction=direction,
            dropout=self.dropout,
            dtype=self.dtype,
        )
122 123 124 125 126

        flat_w = get_params_for_net(rnn1)

        output, last_hidden = rnn1(input, sequence_length=self.sequence_length)

R
ronnywang 已提交
127 128 129 130 131 132 133 134
        if core.is_compiled_with_rocm():

            def rocm_rnn_get_place():
                places = [core.CUDAPlace(0)]
                return places

            self._get_places = rocm_rnn_get_place

135 136 137
        init_h = np.zeros(
            (self.num_layers * self.direction_num, batch_size, self.hidden_size)
        ).astype(self.dtype)
138

139
        state_out = np.ndarray(300).astype("uint8")
140 141 142 143 144

        self.inputs = {
            'Input': input,
            'WeightList': flat_w,
            'PreState': [('init_h', init_h)],
145
            'SequenceLength': self.sequence_length,
146 147 148 149 150 151 152 153 154 155 156 157 158 159
        }
        if self.sequence_length is None:
            self.inputs = {
                'Input': input,
                'WeightList': flat_w,
                'PreState': [('init_h', init_h)],
            }
        self.attrs = {
            'dropout_prob': self.dropout,
            'is_bidirec': self.is_bidirec,
            'input_size': input_size,
            'hidden_size': self.hidden_size,
            'num_layers': self.num_layers,
            'is_test': self.is_test,
160
            'mode': self.mode,
161 162 163 164
        }
        self.outputs = {
            'Out': output,
            'State': [('last_hidden', last_hidden)],
165
            'Reserve': np.ndarray(400).astype("uint8"),
166
            'DropoutState': state_out,
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        }

    def set_attrs(self):
        pass

    def test_output(self):
        self.check_output(no_check_set=['Reserve', 'DropoutState'])

    def test_grad(self):
        if not self.is_test:
            var_name_list = self.get_weight_names()
            grad_check_list = ['Input', 'init_h']
            grad_check_list.extend(var_name_list)
            self.check_grad(set(grad_check_list), ['Out', 'last_hidden'])


class TestGRUOp1(TestGRUOp):
    def set_attrs(self):
        self.sequence_length = None


class TestGRUOp2(TestGRUOp):
    def set_attrs(self):
        self.sequence_length = None
        self.is_bidirec = True


class TestGRUOp3(TestGRUOp):
    def set_attrs(self):
        self.sequence_length = None
        self.is_test = True


class TestGRUOp4(TestGRUOp):
    def set_attrs(self):
        self.sequence_length = None
        self.is_bidirec = True
        self.is_test = True


class TestGRUOpAvx(TestGRUOp):
    def set_attrs(self):
        self.dtype = "float32"
        self.hidden_size = 8


if __name__ == '__main__':
    unittest.main()