test_ptb_lm.py 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import logging
import time
import unittest

import numpy as np
L
Leo Chen 已提交
22
import paddle
23
import paddle.fluid as fluid
24
from paddle.fluid.dygraph.dygraph_to_static import ProgramTranslator
25 26 27 28 29 30 31 32
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.nn import Embedding
from paddle.fluid.optimizer import SGDOptimizer

PRINT_STEP = 20
SEED = 2020

33 34
program_translator = ProgramTranslator()

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

class SimpleLSTMRNN(fluid.Layer):
    def __init__(self,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
        super(SimpleLSTMRNN, self).__init__()
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self._num_steps = num_steps
        self.cell_array = []
        self.hidden_array = []

        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
            bias_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        cell_array = []
        hidden_array = []

        for i in range(self._num_layers):
            hidden_array.append(init_hidden[i])
            cell_array.append(init_cell[i])

        res = []
        for index in range(self._num_steps):
            step_input = input_embedding[:, index, :]
            for k in range(self._num_layers):
                pre_hidden = hidden_array[k]
                pre_cell = cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

                nn = fluid.layers.concat([step_input, pre_hidden], 1)
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                hidden_array[k] = m
                cell_array[k] = c
                step_input = m

                if self._dropout is not None and self._dropout > 0.0:
                    step_input = fluid.layers.dropout(
                        step_input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(step_input)
        real_res = fluid.layers.concat(res, 1)
        real_res = fluid.layers.reshape(
            real_res, [-1, self._num_steps, self._hidden_size])
        last_hidden = fluid.layers.concat(hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell


class PtbModel(fluid.Layer):
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
        super(PtbModel, self).__init__()
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
        self.embedding = Embedding(
            size=[vocab_size, hidden_size],
            dtype='float32',
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
        self.softmax_weight = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def build_once(self, input, label, init_hidden, init_cell):
        pass

    @declarative
    def forward(self, input, label, init_hidden, init_cell):

        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)

        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.dropout,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)

        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)

        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell

    def debug_emb(self):

        np.save("emb_grad", self.x_emb.gradient())


208 209
def train(place):

210 211 212 213 214 215 216 217 218 219 220
    num_layers = 1
    batch_size = 4
    hidden_size = 10
    num_steps = 3
    init_scale = 0.1
    max_epoch = 1
    dropout = 0.0
    vocab_size = 1000
    batch_num = 200

    with fluid.dygraph.guard(place):
C
cnn 已提交
221
        paddle.seed(SEED)
L
Leo Chen 已提交
222
        paddle.framework.random._manual_program_seed(SEED)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        ptb_model = PtbModel(
            hidden_size=hidden_size,
            vocab_size=vocab_size,
            num_layers=num_layers,
            num_steps=num_steps,
            init_scale=init_scale,
            dropout=dropout)

        sgd = SGDOptimizer(
            learning_rate=1e-3, parameter_list=ptb_model.parameters())

        for epoch_id in range(max_epoch):

            total_loss = 0.0
            iters = 0.0
            total_sample = 0

            init_hidden_data = np.zeros(
                (num_layers, batch_size, hidden_size), dtype='float32')
            init_cell_data = np.zeros(
                (num_layers, batch_size, hidden_size), dtype='float32')

            init_hidden = to_variable(init_hidden_data)
            init_cell = to_variable(init_cell_data)
            for step_id in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))

                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, num_steps, 1))

                x = to_variable(x_data)
                y = to_variable(y_data)

                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
                out_loss = dy_loss.numpy()

                dy_loss.backward()
                sgd.minimize(dy_loss)
                ptb_model.clear_gradients()

                total_loss += out_loss
                iters += num_steps
                total_sample += 1
                if step_id % PRINT_STEP == 0:
                    if step_id == 0:
                        logging.info("epoch %d | step %d, loss %0.3f" % (
                            epoch_id, step_id, total_loss / total_sample))
                        avg_batch_time = time.time()
                    else:
                        speed = PRINT_STEP / (time.time() - avg_batch_time)
                        logging.info(
                            "epoch %d | step %d, loss %0.3f, speed %.3f steps/s"
                            % (epoch_id, step_id, total_loss / total_sample,
                               speed))
                        avg_batch_time = time.time()

282
        return out_loss, last_hidden.numpy(), last_cell.numpy()
283 284


285 286 287
def train_dygraph(place):
    program_translator.enable(False)
    return train(place)
288 289


290 291 292
def train_static(place):
    program_translator.enable(True)
    return train(place)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317


class TestPtb(unittest.TestCase):
    def setUp(self):
        self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() \
            else fluid.CPUPlace()

    def test_check_result(self):
        loss_1, hidden_1, cell_1 = train_static(self.place)
        loss_2, hidden_2, cell_2 = train_dygraph(self.place)

        self.assertTrue(
            np.allclose(loss_1, loss_2),
            msg="static loss: {} \ndygraph loss: {}".format(loss_1, loss_2))
        self.assertTrue(
            np.allclose(hidden_1, hidden_2),
            msg="static hidden: {} \ndygraph acc1: {}".format(hidden_1,
                                                              hidden_2))
        self.assertTrue(
            np.allclose(cell_1, cell_2),
            msg="static cell: {} \ndygraph cell: {}".format(cell_1, cell_2))


if __name__ == '__main__':
    unittest.main()