test_complex_matmul.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg


class TestComplexMatMulLayer(unittest.TestCase):
    def setUp(self):
24
        self._dtypes = ["float32", "float64"]
25 26 27 28
        self._places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            self._places.append(fluid.CUDAPlace(0))

29
    def compare_by_complex_api(self, x, y, np_result):
30 31 32 33 34
        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x)
                y_var = dg.to_variable(y)
                result = paddle.complex.matmul(x_var, y_var)
35 36 37 38 39 40 41 42
                pd_result = result.numpy()
                self.assertTrue(
                    np.allclose(pd_result, np_result),
                    "\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n".
                    format(place, pd_result[~np.isclose(pd_result, np_result)],
                           np_result[~np.isclose(pd_result, np_result)]))

    def compare_by_basic_api(self, x, y, np_result):
43 44 45 46
        for place in self._places:
            with dg.guard(place):
                x_var = fluid.core.VarBase(
                    value=x,
47
                    place=place,
48 49 50 51 52
                    persistable=False,
                    zero_copy=None,
                    name='')
                y_var = fluid.core.VarBase(
                    value=y,
53
                    place=place,
54 55 56 57
                    persistable=False,
                    zero_copy=None,
                    name='')
                result = paddle.matmul(x_var, y_var)
58 59 60 61 62 63 64 65
                pd_result = result.numpy()
                self.assertTrue(
                    np.allclose(pd_result, np_result),
                    "\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n".
                    format(place, pd_result[~np.isclose(pd_result, np_result)],
                           np_result[~np.isclose(pd_result, np_result)]))

    def compare_op_by_complex_api(self, x, y, np_result):
66 67 68 69 70
        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x)
                y_var = dg.to_variable(y)
                result = x_var.matmul(y_var)
71 72 73 74 75 76 77 78
                pd_result = result.numpy()
                self.assertTrue(
                    np.allclose(pd_result, np_result),
                    "\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n".
                    format(place, pd_result[~np.isclose(pd_result, np_result)],
                           np_result[~np.isclose(pd_result, np_result)]))

    def compare_op_by_basic_api(self, x, y, np_result):
79 80 81 82
        for place in self._places:
            with dg.guard(place):
                x_var = fluid.core.VarBase(
                    value=x,
83
                    place=place,
84 85 86 87 88
                    persistable=False,
                    zero_copy=None,
                    name='')
                y_var = fluid.core.VarBase(
                    value=y,
89
                    place=place,
90 91 92 93
                    persistable=False,
                    zero_copy=None,
                    name='')
                result = x_var.matmul(y_var)
94 95 96 97 98 99
                pd_result = result.numpy()
                self.assertTrue(
                    np.allclose(pd_result, np_result),
                    "\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n".
                    format(place, pd_result[~np.isclose(pd_result, np_result)],
                           np_result[~np.isclose(pd_result, np_result)]))
100

101
    def test_complex_xy(self):
102 103 104 105 106 107 108
        for dtype in self._dtypes:
            x = np.random.random(
                (2, 3, 4, 5)).astype(dtype) + 1J * np.random.random(
                    (2, 3, 4, 5)).astype(dtype)
            y = np.random.random(
                (2, 3, 5, 4)).astype(dtype) + 1J * np.random.random(
                    (2, 3, 5, 4)).astype(dtype)
109

110
            np_result = np.matmul(x, y)
111

112 113
            self.compare_by_complex_api(x, y, np_result)
            self.compare_op_by_complex_api(x, y, np_result)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    def test_complex_x_real_y(self):
        for dtype in self._dtypes:
            x = np.random.random(
                (2, 3, 4, 5)).astype(dtype) + 1J * np.random.random(
                    (2, 3, 4, 5)).astype(dtype)
            y = np.random.random((2, 3, 5, 4)).astype(dtype)

            np_result = np.matmul(x, y)

            self.compare_by_complex_api(x, y, np_result)
            self.compare_op_by_complex_api(x, y, np_result)

            # float -> complex type promotion
            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    def test_real_x_complex_y(self):
        for dtype in self._dtypes:
            x = np.random.random((2, 3, 4, 5)).astype(dtype)
            y = np.random.random(
                (2, 3, 5, 4)).astype(dtype) + 1J * np.random.random(
                    (2, 3, 5, 4)).astype(dtype)

            np_result = np.matmul(x, y)

            self.compare_by_complex_api(x, y, np_result)

            # float -> complex type promotion
            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    # for coverage
    def test_complex_xy_gemv(self):
        for dtype in self._dtypes:
            x = np.random.random(
                (2, 1, 100)).astype(dtype) + 1J * np.random.random(
                    (2, 1, 100)).astype(dtype)
            y = np.random.random((100)).astype(dtype) + 1J * np.random.random(
                (100)).astype(dtype)

            np_result = np.matmul(x, y)

            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    # for coverage
    def test_complex_xy_gemm(self):
        for dtype in self._dtypes:
            x = np.random.random(
                (1, 2, 50)).astype(dtype) + 1J * np.random.random(
                    (1, 2, 50)).astype(dtype)
            y = np.random.random(
                (1, 50, 2)).astype(dtype) + 1J * np.random.random(
                    (1, 50, 2)).astype(dtype)

            np_result = np.matmul(x, y)

            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)
177

178 179 180

if __name__ == '__main__':
    unittest.main()