multi_tensor_apply.h 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/tensor_utils.h"

namespace phi {
namespace funcs {

// This code is referenced from apex's multi_tensor_apply.cuh.
// https://github.com/NVIDIA/apex

template <int N, int MaxTensorSize, int MaxBlockSize>
struct TensorAndBlockInfo {
  void *tensor_addrs[N - 1][MaxTensorSize];
  const void *grads[MaxTensorSize];
  int sizes[MaxTensorSize];
  uint8_t tensor_ids[MaxBlockSize];
  // int16
  uint16_t chunk_ids[MaxBlockSize];
  int start_chunk_id;

  DEVICE void GetChunkIdAndTensorId(int *chunk_id, int *tensor_id) const {
    int block_id = blockIdx.x;
    int tmp_tensor_id = tensor_ids[block_id];
    *chunk_id = static_cast<int>(chunk_ids[block_id]) +
                (tmp_tensor_id == 0) * start_chunk_id;
    *tensor_id = tmp_tensor_id;
  }
};

template <int N,
          int MaxTensorSize,
          int MaxBlockSize,
          typename Functor,
          typename... ArgTypes>
__global__ void MultiTensorApplyCudaKernel(
    int chunk_size,
    TensorAndBlockInfo<N, MaxTensorSize, MaxBlockSize> t_info,
    Functor functor,
    ArgTypes... args) {
  functor(chunk_size, t_info, args...);
}

template <int InputNum,
          int MaxTensorSize,
          int MaxBlockSize,
          typename Functor,
          typename Context,
          typename... ArgTypes>
void LaunchMultiTensorApplyKernel(
    const Context &dev_ctx,
    int block_size,
    int chunk_size,
    const std::vector<std::vector<DenseTensor *>> &input_vector,
    const std::vector<const DenseTensor *> &grads,
    Functor functor,
    ArgTypes... args) {
  PADDLE_ENFORCE_EQ(
      input_vector.size(),
      InputNum - 1,
      errors::InvalidArgument(
          "input_vector.size() != InputNum - 1, the input vector's size is "
          "unequal to InputNum - 1, please cheack grads, params, momemts1, "
          "moments2, and, master_params."));
  size_t length = input_vector[0].size();
  PADDLE_ENFORCE_GT(
      length,
      0,
      errors::InvalidArgument(
          "input_vector[0].size() is not > 0, please cheack params."));
  auto place = input_vector[0][0]->place();
  PADDLE_ENFORCE_EQ(
      place,
      GPUPlace(),
      errors::InvalidArgument(
          "expected input to be on gpu, but input is on cpu now."));
  for (size_t i = 0; i < input_vector.size(); i++) {
    PADDLE_ENFORCE_EQ(
        input_vector[i].size(),
        length,
        errors::InvalidArgument(
            "some input vectors' size mismatch other input vector."));
    for (size_t j = 0; j < input_vector[i].size(); j++) {
      PADDLE_ENFORCE_EQ(
          input_vector[i][j]->place(),
          place,
          errors::InvalidArgument(
              "A tensor was not on the same device as the first tensor"));
      PADDLE_ENFORCE_EQ(input_vector[i][j]->numel(),
                        input_vector[0][j]->numel(),
                        errors::InvalidArgument(
                            "The number of elements of Inputs must be equal."));
    }
  }

  size_t tensors_size = input_vector[0].size();

  TensorAndBlockInfo<InputNum, MaxTensorSize, MaxBlockSize> t_info;
  t_info.start_chunk_id = 0;

  auto stream = dev_ctx.stream();
  int block_id = 0;
  int tensor_id = 0;
  for (int t = 0; t < tensors_size; t++) {
    t_info.sizes[tensor_id] = input_vector[0][t]->numel();
    t_info.grads[tensor_id] = grads[t]->data();
    for (int d = 0; d < InputNum - 1; d++) {
      t_info.tensor_addrs[d][tensor_id] = input_vector[d][t]->data();
    }
    tensor_id++;
    int chunks_this_tensor =
        (input_vector[0][t]->numel() + chunk_size - 1) / chunk_size;

    constexpr auto kMaxChunkId = std::numeric_limits<uint16_t>::max();
    for (int chunk = 0; chunk < chunks_this_tensor; chunk++) {
      t_info.tensor_ids[block_id] = tensor_id - 1;
      auto saved_chunk_id =
          (tensor_id == 1 ? chunk - t_info.start_chunk_id : chunk);
      PADDLE_ENFORCE_GE(saved_chunk_id,
                        0,
                        errors::InvalidArgument(
                            "The chunk id is less than 0 in "
                            "MultiTensorApplyKernel. This may be a bug."));
      PADDLE_ENFORCE_LE(
          saved_chunk_id,
          kMaxChunkId,
          errors::InvalidArgument(
              "The chunk id exceeds maximum value %d. This may be a bug.",
              kMaxChunkId));
      t_info.chunk_ids[block_id] = saved_chunk_id;
      block_id++;
      bool reach_tensors_limit =
          (tensor_id == MaxTensorSize && chunk == chunks_this_tensor - 1);
      bool reach_blocks_limit = (block_id == MaxBlockSize);
      bool finish_compute =
          (t == tensors_size - 1 && chunk == chunks_this_tensor - 1);
      if (reach_tensors_limit || reach_blocks_limit || finish_compute) {
        MultiTensorApplyCudaKernel<InputNum,
                                   MaxTensorSize,
                                   MaxBlockSize,
                                   Functor,
                                   ArgTypes...>
            <<<block_id, block_size, 0, stream>>>(
                chunk_size, t_info, functor, args...);

        block_id = 0;
        if (chunk == chunks_this_tensor - 1) {
          tensor_id = 0;
          t_info.start_chunk_id = 0;
        } else {
          t_info.sizes[0] = t_info.sizes[tensor_id - 1];
          t_info.grads[0] = t_info.grads[tensor_id - 1];
          for (int d = 0; d < InputNum - 1; d++) {
            t_info.tensor_addrs[d][0] = t_info.tensor_addrs[d][tensor_id - 1];
          }
          tensor_id = 1;
          t_info.start_chunk_id = chunk + 1;
        }
      }
    }
  }
}

}  // namespace funcs
}  // namespace phi