math_function_test.cu 14.7 KB
Newer Older
1
//  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Q
qijun 已提交
14
#include "gtest/gtest.h"
Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/math_function.h"
Q
qijun 已提交
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
void fill_fp16_data(paddle::platform::float16* in_ptr, size_t size,
                    const std::vector<float>& data) {
  PADDLE_ENFORCE_EQ(size, data.size());
  for (size_t i = 0; i < data.size(); ++i) {
    in_ptr[i] = paddle::platform::float16(data[i]);
  }
}

TEST(math_function, notrans_mul_trans_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
40 41 42
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

43 44
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);
Q
qijun 已提交
45

46
  out_gpu.mutable_data<float>({2, 2}, gpu_place);
Q
qijun 已提交
47

48
  paddle::operators::math::matmul<CUDADeviceContext, float>(
Q
qijun 已提交
49 50
      context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);

51
  TensorCopy(out_gpu, cpu_place, context, &out);
Q
qijun 已提交
52 53 54 55 56 57 58 59 60

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 5);
  EXPECT_EQ(out_ptr[1], 14);
  EXPECT_EQ(out_ptr[2], 14);
  EXPECT_EQ(out_ptr[3], 50);
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74
TEST(math_function, notrans_mul_trans_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

K
Kexin Zhao 已提交
75 76 77 78 79
  // fp16 GEMM in cublas requires GPU compute capability >= 53
  if (context.GetComputeCapability() < 53) {
    return;
  }

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);

  out_gpu.mutable_data<float16>({2, 2}, gpu_place);

  paddle::operators::math::matmul<CUDADeviceContext, float16>(
      context, input1_gpu, false, input2_gpu, true, float16(1), &out_gpu,
      float16(0));

  TensorCopy(out_gpu, cpu_place, context, &out);

  float16* out_ptr = out.data<float16>();
  context.Wait();
  EXPECT_EQ(static_cast<float>(out_ptr[0]), 5);
  EXPECT_EQ(static_cast<float>(out_ptr[1]), 14);
  EXPECT_EQ(static_cast<float>(out_ptr[2]), 14);
  EXPECT_EQ(static_cast<float>(out_ptr[3]), 50);
}

TEST(math_function, trans_mul_notrans_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);
Q
qijun 已提交
115

116
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
117 118 119
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

120 121
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);
Q
qijun 已提交
122

123
  out_gpu.mutable_data<float>({3, 3}, gpu_place);
Q
qijun 已提交
124

Q
QI JUN 已提交
125
  paddle::operators::math::matmul<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
126 127
      context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);

128
  TensorCopy(out_gpu, cpu_place, context, &out);
Q
qijun 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 9);
  EXPECT_EQ(out_ptr[1], 12);
  EXPECT_EQ(out_ptr[2], 15);
  EXPECT_EQ(out_ptr[3], 12);
  EXPECT_EQ(out_ptr[4], 17);
  EXPECT_EQ(out_ptr[5], 22);
  EXPECT_EQ(out_ptr[6], 15);
  EXPECT_EQ(out_ptr[7], 22);
  EXPECT_EQ(out_ptr[8], 29);
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156
TEST(math_function, trans_mul_notrans_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

K
Kexin Zhao 已提交
157 158 159 160 161
  // fp16 GEMM in cublas requires GPU compute capability >= 53
  if (context.GetComputeCapability() < 53) {
    return;
  }

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);

  out_gpu.mutable_data<float16>({3, 3}, gpu_place);

  paddle::operators::math::matmul<paddle::platform::CUDADeviceContext, float16>(
      context, input1_gpu, true, input2_gpu, false, float16(1), &out_gpu,
      float16(0));

  TensorCopy(out_gpu, cpu_place, context, &out);

  float16* out_ptr = out.data<float16>();
  context.Wait();
  EXPECT_EQ(static_cast<float>(out_ptr[0]), 9);
  EXPECT_EQ(static_cast<float>(out_ptr[1]), 12);
  EXPECT_EQ(static_cast<float>(out_ptr[2]), 15);
  EXPECT_EQ(static_cast<float>(out_ptr[3]), 12);
  EXPECT_EQ(static_cast<float>(out_ptr[4]), 17);
  EXPECT_EQ(static_cast<float>(out_ptr[5]), 22);
  EXPECT_EQ(static_cast<float>(out_ptr[6]), 15);
  EXPECT_EQ(static_cast<float>(out_ptr[7]), 22);
  EXPECT_EQ(static_cast<float>(out_ptr[8]), 29);
}

TEST(math_function, gemm_notrans_cublas_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);
Q
qijun 已提交
203 204 205 206

  int m = 2;
  int n = 3;
  int k = 3;
207
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
208 209
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
210
  float* input2_ptr = input2.mutable_data<float>({3, 4}, cpu_place);
Q
qijun 已提交
211 212
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
213
  float* input3_ptr = input3.mutable_data<float>({2, 4}, cpu_place);
Q
qijun 已提交
214 215 216
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

217 218 219
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
Q
qijun 已提交
220 221
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
222
  float* c = input3_gpu.mutable_data<float>(gpu_place);
Q
qijun 已提交
223

Q
QI JUN 已提交
224
  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
225 226
      context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);

227
  TensorCopy(input3_gpu, cpu_place, context, &input3);
Q
qijun 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
TEST(math_function, gemm_notrans_cublas_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

K
Kexin Zhao 已提交
261 262 263 264 265
  // fp16 GEMM in cublas requires GPU compute capability >= 53
  if (context.GetComputeCapability() < 53) {
    return;
  }

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  int m = 2;
  int n = 3;
  int k = 3;
  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});
  float16* input2_ptr = input2.mutable_data<float16>({3, 4}, cpu_place);
  fill_fp16_data(input2_ptr, input2.numel(),
                 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11});
  float16* input3_ptr = input3.mutable_data<float16>({2, 4}, cpu_place);
  fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
  float16* a = input1_gpu.data<float16>();
  float16* b = input2_gpu.data<float16>();
  float16* c = input3_gpu.mutable_data<float16>(gpu_place);

  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float16>(
      context, false, false, m, n, k, float16(1), a, 3, b + 1, 4, float16(1),
      c + 1, 4);

  TensorCopy(input3_gpu, cpu_place, context, &input3);

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(static_cast<float>(input3_ptr[0]), 0);
  EXPECT_EQ(static_cast<float>(input3_ptr[1]), 24);
  EXPECT_EQ(static_cast<float>(input3_ptr[2]), 28);
  EXPECT_EQ(static_cast<float>(input3_ptr[3]), 32);
  EXPECT_EQ(static_cast<float>(input3_ptr[4]), 4);
  EXPECT_EQ(static_cast<float>(input3_ptr[5]), 73);
  EXPECT_EQ(static_cast<float>(input3_ptr[6]), 86);
  EXPECT_EQ(static_cast<float>(input3_ptr[7]), 99);
}

TEST(math_function, gemm_trans_cublas_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);
Q
qijun 已提交
321 322 323 324

  int m = 2;
  int n = 3;
  int k = 3;
325
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
326 327
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
328
  float* input2_ptr = input2.mutable_data<float>({4, 3}, cpu_place);
Q
qijun 已提交
329 330
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
331
  float* input3_ptr = input3.mutable_data<float>({2, 4}, cpu_place);
Q
qijun 已提交
332 333 334
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

335 336 337
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
Q
qijun 已提交
338 339
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
340
  float* c = input3_gpu.mutable_data<float>(gpu_place);
Q
qijun 已提交
341

Q
QI JUN 已提交
342
  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
343 344
      context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);

345
  TensorCopy(input3_gpu, cpu_place, context, &input3);
Q
qijun 已提交
346

347
  context.Wait();
Q
qijun 已提交
348 349 350 351 352 353 354 355
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
}

TEST(math_function, gemm_trans_cublas_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

K
Kexin Zhao 已提交
373 374 375 376 377
  // fp16 GEMM in cublas requires GPU compute capability >= 53
  if (context.GetComputeCapability() < 53) {
    return;
  }

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  int m = 2;
  int n = 3;
  int k = 3;
  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});
  float16* input2_ptr = input2.mutable_data<float16>({4, 3}, cpu_place);
  fill_fp16_data(input2_ptr, input2.numel(),
                 {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11});
  float16* input3_ptr = input3.mutable_data<float16>({2, 4}, cpu_place);
  fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
  float16* a = input1_gpu.data<float16>();
  float16* b = input2_gpu.data<float16>();
  float16* c = input3_gpu.mutable_data<float16>(gpu_place);

  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float16>(
      context, false, true, m, n, k, float16(1), a, 3, b + 3, 3, float16(1),
      c + 1, 4);

  TensorCopy(input3_gpu, cpu_place, context, &input3);

  context.Wait();
  EXPECT_EQ(static_cast<float>(input3_ptr[0]), 0);
  EXPECT_EQ(static_cast<float>(input3_ptr[1]), 24);
  EXPECT_EQ(static_cast<float>(input3_ptr[2]), 28);
  EXPECT_EQ(static_cast<float>(input3_ptr[3]), 32);
  EXPECT_EQ(static_cast<float>(input3_ptr[4]), 4);
  EXPECT_EQ(static_cast<float>(input3_ptr[5]), 73);
  EXPECT_EQ(static_cast<float>(input3_ptr[6]), 86);
  EXPECT_EQ(static_cast<float>(input3_ptr[7]), 99);
Q
qijun 已提交
411
}
412 413 414

template <typename T>
void GemvTest(int m, int n, bool trans) {
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor mat_a;
  Tensor vec_b;
  Tensor vec_c;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  T* data_a = mat_a.mutable_data<T>({m, n}, cpu_place);
  T* data_b = vec_b.mutable_data<T>({trans ? m : n}, cpu_place);
  T* data_c = vec_c.mutable_data<T>({trans ? n : m}, cpu_place);

  Tensor g_mat_a;
  Tensor g_vec_b;
  Tensor g_vec_c;
  T* g_data_a = g_mat_a.mutable_data<T>(mat_a.dims(), gpu_place);
  T* g_data_b = g_vec_b.mutable_data<T>(vec_b.dims(), gpu_place);
  T* g_data_c = g_vec_c.mutable_data<T>(vec_c.dims(), gpu_place);
436 437 438 439 440 441 442 443

  for (int i = 0; i < mat_a.numel(); ++i) {
    data_a[i] = static_cast<T>(i);
  }
  for (int i = 0; i < vec_b.numel(); ++i) {
    data_b[i] = static_cast<T>(i);
  }

444 445
  TensorCopy(mat_a, gpu_place, context, &g_mat_a);
  TensorCopy(vec_b, gpu_place, context, &g_vec_b);
446

447
  paddle::operators::math::gemv<CUDADeviceContext, T>(
448 449 450
      context, trans, static_cast<int>(m), static_cast<int>(n), 1., g_data_a,
      g_data_b, 0., g_data_c);

451
  TensorCopy(g_vec_c, cpu_place, context, &vec_c);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

  if (!trans) {
    for (int i = 0; i < m; ++i) {
      T sum = 0.0;
      for (int j = 0; j < n; ++j) {
        sum += data_a[i * n + j] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      T sum = 0.0;
      for (int j = 0; j < m; ++j) {
        sum += data_a[j * n + i] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  }
}

TEST(math_function, gemv) {
  GemvTest<float>(3, 13, false);
  GemvTest<double>(3, 13, false);
  GemvTest<float>(3, 13, true);
  GemvTest<double>(3, 13, true);
}