test_lookup_table_op.py 15.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
from op_test import OpTest, skip_check_grad_ci, check_out_dtype
C
chengduoZH 已提交
18 19
import paddle.fluid.core as core
from paddle.fluid.op import Operator
M
minqiyang 已提交
20
import paddle.compat as cpt
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
23
import paddle.nn.functional as F
24 25


Q
qijun 已提交
26
class TestLookupTableOp(OpTest):
27

28
    def setUp(self):
Q
qijun 已提交
29
        self.op_type = "lookup_table"
30
        table = np.random.random((17, 31)).astype("float64")
31
        ids = np.random.randint(0, 17, 4).astype("int64")
32 33
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
34 35
        self.outputs = {'Out': table[ids]}

Q
qijun 已提交
36 37
    def test_check_output(self):
        self.check_output()
38

Q
qijun 已提交
39 40
    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))
41 42


F
fengjiayi 已提交
43
class TestLookupTableOpWithTensorIds(OpTest):
44

F
fengjiayi 已提交
45 46
    def setUp(self):
        self.op_type = "lookup_table"
47
        table = np.random.random((17, 31)).astype("float64")
48 49
        ids = np.random.randint(low=0, high=17,
                                size=(2, 4, 5, 1)).astype("int64")
F
fengjiayi 已提交
50 51 52 53 54 55 56 57 58 59
        self.inputs = {'W': table, 'Ids': ids}
        self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))


60 61 62 63
@skip_check_grad_ci(
    reason="Since paddings are not trainable and fixed in forward,"
    "the gradient of paddings makes no sense and we don't "
    "test the gradient here.")
64
class TestLookupTableOpWithPadding(TestLookupTableOp):
65

66 67 68 69
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
70
        self.attrs = {'padding_idx': int(padding_idx)}
71 72 73
        self.check_output()


74 75 76 77
@skip_check_grad_ci(
    reason="Since paddings are not trainable and fixed in forward,"
    "the gradient of paddings makes no sense and we don't "
    "test the gradient here.")
F
fengjiayi 已提交
78
class TestLookupTableOpWithTensorIdsAndPadding(TestLookupTableOpWithTensorIds):
79

F
fengjiayi 已提交
80 81 82 83 84
    def test_check_output(self):
        ids = self.inputs['Ids']
        flatten_idx = ids.flatten()
        padding_idx = np.random.choice(flatten_idx, 1)[0]
        self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
85
        self.attrs = {'padding_idx': padding_idx}
F
fengjiayi 已提交
86 87
        self.check_output()

Q
qiaolongfei 已提交
88

89
class TestLookupTableWIsSelectedRows(unittest.TestCase):
90

F
fengjiayi 已提交
91
    def prepare_ids(self, scope, place):
Q
qiaolongfei 已提交
92 93 94
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.array([[0], [4], [3], [5]]).astype("int64")
        ids_tensor.set(ids_array, place)
F
fengjiayi 已提交
95
        return ids_array
Q
qiaolongfei 已提交
96

F
fengjiayi 已提交
97
    def prepare_w(self, scope, place):
Q
qiaolongfei 已提交
98 99 100 101 102 103 104 105 106
        rows = [0, 1, 2, 3, 4, 5, 6]
        row_numel = 12

        w_selected_rows = scope.var('W').get_selected_rows()
        w_selected_rows.set_height(len(rows))
        w_selected_rows.set_rows(rows)
        w_array = np.ones((len(rows), row_numel)).astype("float32")
        for i in range(len(rows)):
            w_array[i] *= i
Q
qiaolongfei 已提交
107 108
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)
Q
qiaolongfei 已提交
109

F
fengjiayi 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    def create_out_tensor(self, scope, place):
        return scope.var('Out').get_tensor()

    def check_result(self, ids_array, result_array):
        # all(): return True if all elements of the iterable are true (or if the iterable is empty)
        for idx, row in enumerate(ids_array):
            assert (row[0] == result_array[idx]).all()

    def check_with_place(self, place):
        scope = core.Scope()

        ids_array = self.prepare_ids(scope, place)

        self.prepare_w(scope, place)

        out_tensor = self.create_out_tensor(scope, place)
Q
qiaolongfei 已提交
126 127 128 129 130 131

        # create and run lookup_table operator
        lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        lookup_table.run(scope, place)

        # get result from Out
Q
qiaolongfei 已提交
132
        result_array = np.array(out_tensor)
F
fengjiayi 已提交
133 134

        self.check_result(ids_array, result_array)
Q
qiaolongfei 已提交
135 136 137 138 139 140 141 142

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
        # currently only support CPU
        for place in places:
            self.check_with_place(place)


143 144 145
class TestLookupTableWithTensorIdsWIsSelectedRows(TestLookupTableWIsSelectedRows
                                                  ):

F
fengjiayi 已提交
146 147
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
148 149
        ids_array = np.random.randint(low=0, high=6,
                                      size=(2, 4, 3, 1)).astype("int64")
F
fengjiayi 已提交
150 151 152 153 154 155 156 157
        ids_tensor.set(ids_array, place)
        return ids_array

    def check_result(self, ids_array, result_array):
        for idx, row in np.ndenumerate(ids_array):
            assert (row == result_array[idx]).all()


158
class TestEmbedOpError(unittest.TestCase):
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.randint(0, 10, (4, 1)).astype("int64")

            def test_Variable():
                # the input type must be Variable
                fluid.layers.embedding(input=input_data, size=(10, 64))

            self.assertRaises(TypeError, test_Variable)

            def test_input_dtype():
                # the input dtype must be int64
                input = fluid.data(name='x', shape=[4, 1], dtype='float32')
                fluid.layers.embedding(input=input, size=(10, 64))

            self.assertRaises(TypeError, test_input_dtype)

            def test_param_dtype():
                # dtype must be float32 or float64
                input2 = fluid.data(name='x2', shape=[4, 1], dtype='int64')
180 181 182
                fluid.layers.embedding(input=input2,
                                       size=(10, 64),
                                       dtype='int64')
183 184 185 186 187 188 189

            self.assertRaises(TypeError, test_param_dtype)

            input3 = fluid.data(name='x3', shape=[4, 1], dtype='int64')
            fluid.layers.embedding(input=input3, size=(10, 64), dtype='float16')


190
class TestLookupTableOpInt8(OpTest):
191

192 193
    def setUp(self):
        self.op_type = "lookup_table"
194 195
        table = np.random.randint(low=-128, high=127,
                                  size=(17, 31)).astype("int8")
196 197 198 199 200 201 202 203 204
        ids = np.random.randint(0, 17, 4).astype("int64")
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
        self.outputs = {'Out': table[ids]}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
205
        # since int8 type only be used in test and inference, there is
206 207 208 209 210
        # no gradient implement, so we don't need to test it
        pass


class TestLookupTableOpWithTensorIdsInt8(OpTest):
211

212 213
    def setUp(self):
        self.op_type = "lookup_table"
214 215 216 217
        table = np.random.randint(low=-128, high=127,
                                  size=(17, 31)).astype("int8")
        ids = np.random.randint(low=0, high=17,
                                size=(2, 4, 5, 1)).astype("int64")
218 219 220 221 222 223 224
        self.inputs = {'W': table, 'Ids': ids}
        self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
225
        # since int8 type only be used in test and inference, there is
226 227 228 229 230
        # no gradient implement, so we don't need to test it
        pass


class TestLookupTableOpWithPaddingInt8(TestLookupTableOpInt8):
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
        self.attrs = {'padding_idx': int(padding_idx)}
        self.check_output()

    def test_check_grad(self):
        # Since paddings are not trainable and fixed in forward, the gradient of
        # paddings makes no sense and we don't test the gradient here.
        pass


class TestLookupTableOpWithTensorIdsAndPaddingInt8(
        TestLookupTableOpWithTensorIdsInt8):
247

248 249 250 251 252
    def test_check_output(self):
        ids = self.inputs['Ids']
        flatten_idx = ids.flatten()
        padding_idx = np.random.choice(flatten_idx, 1)[0]
        self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
253
        self.attrs = {'padding_idx': padding_idx}
254 255 256 257 258 259 260 261
        self.check_output()

    def test_check_grad(self):
        # Since paddings are not trainable and fixed in forward, the gradient of
        # paddings makes no sense and we don't test the gradient here.
        pass


262
class TestLookupTableWIsSelectedRowsInt8(unittest.TestCase):
263

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.array([[0], [4], [3], [5]]).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def prepare_w(self, scope, place):
        rows = [0, 1, 2, 3, 4, 5, 6]
        row_numel = 12

        w_selected_rows = scope.var('W').get_selected_rows()
        w_selected_rows.set_height(len(rows))
        w_selected_rows.set_rows(rows)
        w_array = np.ones((len(rows), row_numel)).astype("int8")
        for i in range(len(rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

    def create_out_tensor(self, scope, place):
        return scope.var('Out').get_tensor()

    def check_result(self, ids_array, result_array):
        # all(): return True if all elements of the iterable are true (or if the iterable is empty)
        for idx, row in enumerate(ids_array):
            assert (row[0] == result_array[idx]).all()

    def check_with_place(self, place):
        scope = core.Scope()

        ids_array = self.prepare_ids(scope, place)

        self.prepare_w(scope, place)

        out_tensor = self.create_out_tensor(scope, place)

        # create and run lookup_table operator
        lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        lookup_table.run(scope, place)

        # get result from Out
        result_array = np.array(out_tensor)

        self.check_result(ids_array, result_array)

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
        # currently only support CPU
        for place in places:
            self.check_with_place(place)


class TestLookupTableWithTensorIdsWIsSelectedRowsInt8(
        TestLookupTableWIsSelectedRowsInt8):
318

319 320
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
321 322
        ids_array = np.random.randint(low=0, high=6,
                                      size=(2, 4, 3, 1)).astype("int64")
323 324 325 326 327 328 329 330
        ids_tensor.set(ids_array, place)
        return ids_array

    def check_result(self, ids_array, result_array):
        for idx, row in np.ndenumerate(ids_array):
            assert (row == result_array[idx]).all()


331 332
@skip_check_grad_ci(reason="Int16 type only be used in test and inference.")
class TestLookupTableOpInt16(OpTest):
333

334 335
    def setUp(self):
        self.op_type = "lookup_table"
336 337
        table = np.random.randint(low=-128, high=127,
                                  size=(17, 31)).astype("int16")
338 339 340 341 342 343 344 345 346 347 348
        ids = np.random.randint(0, 17, 4).astype("int64")
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
        self.outputs = {'Out': table[ids]}

    def test_check_output(self):
        self.check_output()


@skip_check_grad_ci(reason="Int16 type only be used in test and inference.")
class TestLookupTableOpWithTensorIdsInt16(OpTest):
349

350 351
    def setUp(self):
        self.op_type = "lookup_table"
352 353 354 355
        table = np.random.randint(low=-128, high=127,
                                  size=(17, 31)).astype("int16")
        ids = np.random.randint(low=0, high=17,
                                size=(2, 4, 5, 1)).astype("int64")
356 357 358 359 360 361 362 363 364
        self.inputs = {'W': table, 'Ids': ids}
        self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))}

    def test_check_output(self):
        self.check_output()


@skip_check_grad_ci(reason="Int16 type only be used in test and inference.")
class TestLookupTableOpWithPaddingInt16(TestLookupTableOpInt16):
365

366 367 368 369 370 371 372 373 374 375 376
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
        self.attrs = {'padding_idx': int(padding_idx)}
        self.check_output()


@skip_check_grad_ci(reason="Int16 type only be used in test and inference.")
class TestLookupTableOpWithTensorIdsAndPaddingInt16(
        TestLookupTableOpWithTensorIdsInt16):
377

378 379 380 381 382
    def test_check_output(self):
        ids = self.inputs['Ids']
        flatten_idx = ids.flatten()
        padding_idx = np.random.choice(flatten_idx, 1)[0]
        self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
383
        self.attrs = {'padding_idx': padding_idx}
384 385 386 387
        self.check_output()


class TestLookupTableWIsSelectedRowsInt16(unittest.TestCase):
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.array([[0], [4], [3], [5]]).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def prepare_w(self, scope, place):
        rows = [0, 1, 2, 3, 4, 5, 6]
        row_numel = 12

        w_selected_rows = scope.var('W').get_selected_rows()
        w_selected_rows.set_height(len(rows))
        w_selected_rows.set_rows(rows)
        w_array = np.ones((len(rows), row_numel)).astype("int16")
        for i in range(len(rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

    def create_out_tensor(self, scope, place):
        return scope.var('Out').get_tensor()

    def check_result(self, ids_array, result_array):
        for idx, row in enumerate(ids_array):
            assert (row[0] == result_array[idx]).all()

    def check_with_place(self, place):
        scope = core.Scope()

        ids_array = self.prepare_ids(scope, place)

        self.prepare_w(scope, place)

        out_tensor = self.create_out_tensor(scope, place)

        # create and run lookup_table operator
        lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        lookup_table.run(scope, place)

        # get result from Out
        result_array = np.array(out_tensor)

        self.check_result(ids_array, result_array)

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
        # currently only support CPU
        for place in places:
            self.check_with_place(place)


class TestLookupTableWithTensorIdsWIsSelectedRowsInt16(
        TestLookupTableWIsSelectedRowsInt16):
442

443 444
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
445 446
        ids_array = np.random.randint(low=0, high=6,
                                      size=(2, 4, 3, 1)).astype("int64")
447 448 449 450 451 452 453 454
        ids_tensor.set(ids_array, place)
        return ids_array

    def check_result(self, ids_array, result_array):
        for idx, row in np.ndenumerate(ids_array):
            assert (row == result_array[idx]).all()


455
class TestOutDtype(unittest.TestCase):
456

457 458
    def test_dtype(self):
        api_fn = F.embedding
459 460 461 462
        check_out_dtype(api_fn,
                        in_specs=[([10, 16], 'int64'), ([100, 64], )],
                        expect_dtypes=['float32', 'float64'],
                        target_index=1)
463 464


Q
qijun 已提交
465
if __name__ == "__main__":
466
    unittest.main()