api.md 7.5 KB
Newer Older
Y
Yi Wang 已提交
1
# PaddlePaddle Design Doc
Y
Yi Wang 已提交
2 3 4

## Ingredients

5 6 7
As our design principle is starting from the essence: how could we
allow users to express and solve their problems at neural networks.
Some essential concepts that our API have to provide include:
Y
Yi Wang 已提交
8

9
1. A *topology* is an expression of *layers*.
Y
Yi Wang 已提交
10

11
1. A layer could be any kind of computation, including *cost*.
Y
Yi Wang 已提交
12

13 14
1. Some layers have parameters, some don't. Most costs don't have
   parameters.
Y
Yi Wang 已提交
15

16 17 18 19 20 21 22 23 24 25
1. In some topologies, layers share parameters.  For
   example,
   [the network for training a ranking model](https://github.com/PaddlePaddle/Paddle/issues/1311#issuecomment-279121850).
   
1. At programming time, users specify topologies and possible sharing
   of parameters.  PaddlePaddle can figure out and create parameters
   required (and possibly shared) by one or more topologies.
   

## Starting from Examples
Y
Yi Wang 已提交
26

27 28 29 30
As a summarization
of
[our disucssion](https://github.com/PaddlePaddle/Paddle/issues/1315),
let us present two examples here:
Y
Yi Wang 已提交
31 32


33
### Example 1. Sharing Parameters between Layers
Y
Yi Wang 已提交
34

35 36 37 38 39
We use
the
[3-branch ranking](https://github.com/PaddlePaddle/Paddle/issues/1311#issuecomment-279121850) model
in this example.  For your convenience, I copy-a-paste the model's
topology as follows:
Y
Yi Wang 已提交
40 41

```
42 43 44
A -> f -\
Q -> f --> cost
B -> f -/
Y
Yi Wang 已提交
45 46
```

47 48
The following program trains the topology including the cost, and then
use the sub-network in the trained topology in inference:
Y
Yi Wang 已提交
49 50

```python
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
def f(in):
    e = paddle.layer.embedding(in, parameter_name="embedding")
    o = paddle.layer.softmax(e, parameter_name="semantic")
    return o

# Create 3 topologies (subnets), they share parameters because all
# correspoinding layers have the same parameter names.
fA = f(paddle.layer.data(input_name="A"))
fB = f(paddle.layer.data(input_name="B"))
fQ = f(paddle.layer.data(input_name="Q"))

topology = paddle.cost.less_than(
               paddle.cost.cross_entropy(fA, fQ),
               paddle.cost.corss_entropy(fB, fQ))

# Derive parameters required in topology and create them in model.
parameters = paddle.parameters.create(topology)

# Estimate parameters used in topology from data.
paddle.train(topology, parameters, reader=read_ranking_model_data)

# Inference using fA (or fB or fC, as they share their parameters).
[testA, testB, testQ] = read_ranking_model_data()
print "The sematic-vector of testA: ", paddle.infer(fA, parameters, testA)
Y
Yi Wang 已提交
75 76 77
```


78
### Example 2. Sharing Parameters between "Models"
Y
Yi Wang 已提交
79

80 81 82
We use [GAN](https://github.com/PaddlePaddle/book/tree/develop/gan) in
this example.  In the following example program, `d0` and `d1`
correspond to the two networks in the following figure:
Y
Yi Wang 已提交
83

84
<img src="https://github.com/wangyang59/book/raw/00036f4b0da5225041a6824587c1a01cf20159b1/gan/image/gan_ig.png" width=400 />
Y
Yi Wang 已提交
85 86

```python
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
def G(in):
    # over-simplified example as G has only one layers:
    return paddle.layer.fc(in, parameter_name="G") 

def D(in);
    # again, over-simplified:
    return paddle.layer.fc(in, parameter_name="D")

# Construct the first topology, which contains both D and G.
# By learning this topology, we update parameters of G.
d0 = paddle.cost.should_be_false(D(G(paddle.layer.data())))

# Construct a second topology d1, which contains only D. By
# training this topology, we update parameters of D.  Note 
# that d1 share parameters with d0.
d1 = paddle.cost.should_be_true(D(paddle.layer.data()))

# Create parameters from a list of multiple topologies (models) for
# the chance to share parameters between these topologies.
parameters = paddle.parameters.create([d0, d1])

# Iterative training of GAN.
for ...:
    train(d0, parameters, reader=read_from_rng, immutable_parameters={"D"})
    train(d1, parameters, reader=read_from_realistic_images)

# Use d1 for inference:
print "D thinks a batch of images are realistic ", infer(d1, parameters, read_mnist_images)
Y
Yi Wang 已提交
115 116 117
```


118
### Summarization
Y
Yi Wang 已提交
119 120


121
Above two programs reveal some important design concerns:
Y
Yi Wang 已提交
122

123 124 125 126
1. Users describe a topology as an expression of layers.  Every layer
   has a *parameter name*.  If the users don't specify it explicitly, it's automatically generated as a unique name.  By
   specifying the parameter name, users can specify the sharing of
   parameters between layers and even between topologies.
Y
Yi Wang 已提交
127

128 129 130 131
1. `paddle.parameters.create` figures out parameters required by one
   or more topologies from parameter names of layers.  It creates these
   parameters and returns a `ParameterSet` object, which is in essence
   a map from *parameter names* to *parameters*.
Y
Yi Wang 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146
1. At training and inference time, `paddle.train` and `paddle.infer`
   requires both a topology and the parameter set that holds the parameters of that topology.  There are some reasons:
   
   1. This prevents users from forgetting to call
      `paddle.parameters.create`.
   1. `paddle.train` needs to know which parameter set to update.
   1. Users could load another (pre-trained) parameter set and use it
      with a topology in `train.infer`.
   
1. By specifying the `immutable_parameters` parameter of
   `paddle.train`, we can forbid the update of these parameters.
   

## Reader
Y
Yi Wang 已提交
147 148 149 150 151 152 153 154 155

Not all programming frameworks allow users to define I/O functions.
An example is Google MapReduce, which can only read from text,
SSTable, and RecordIO files.  Hadoop MapReduce allows users to define
readers and writers by deriving from base classes `Reader` and
`Writer`.  The former is less flexible but also less error-prone.  We
decide to provide the flexibility to users to define their readers.


156
There are some open questions here:
Y
Yi Wang 已提交
157

158
1. **Should a reader return a Python dictionary?**
Y
Yi Wang 已提交
159

160
1. **How to map multiple outputs from a reader to multiple data layers?**
Y
Yi Wang 已提交
161

162 163
1. **How to easily compose some existing readers to read more data and
   feed a topology with more data layers?**
Y
Yi Wang 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217


### Training

The recommended way to training a model is to call `paddle.train`,
which simply calls `paddle.optimizer.Default`, a global variable of
type `paddle.optimizer.SGD`.  Equivalently, we can do

```python
opt = paddle.optimizer.SGD(...)
opt.train(model, reader=read, ...)
```

#### Distributed Training

If users want to do distributed training on a cluster, s/he should
call `paddle.dist_train` and provides access tokens to the cluster as
a parameter.

For example, if the user has a TLS certificate that allows him to
access a Kubernetes cluster, s/he should be able to call

```python
paddle.dist_train(model,
                  reader=read,
                  optimizer=paddle.optimizer.SGDOptimizer(...),
                  k8s_user="yi",
                  k8s_token="kube_cluster_tls.pem",
                  k8s_job="hello",
                  num_parameter_servers=15)
```

The pseudo code if `paddle.dist_train` is as follows:

```python
def dist_train():
    if os.getenv("KUBERNETES_SERVICE_HOST") == None:
        image_name = k8s_user + '/' + k8s_job
        docker_build(image_name)
        docker_push()
        kube_ctrl_start_job(image_name, k8s_user, k8s_token)
    else:
        rank = kube_list_containers_in_job_and_return_current_containers_rank()
        if rank == 0:
            master()
        elif rank < 15:
            parameter_server()
        else:
            optimizer.train(model, reader=read)
```

Please be aware that if a process is running on the Kubernetes
cluster, it will have some environment variables pre-defined.

218
If `dist_train` doesn't see these environment variables, it knows
Y
Yi Wang 已提交
219 220 221 222
that it's running on users' personal computer, and it should work as a
*launcher*.  Otherwise, it knows that it's running on the cluster and
need to figure out its role as either the master, or a trainer, or a
parameter server.