debugger.py 7.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
M
minqiyang 已提交
16
import six
17
import re
18 19
from .graphviz import GraphPreviewGenerator
from .proto import framework_pb2
G
gongweibao 已提交
20
from google.protobuf import text_format
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
_vartype2str_ = [
    "UNK",
    "LoDTensor",
    "SelectedRows",
    "FeedMinibatch",
    "FetchList",
    "StepScopes",
    "LodRankTable",
    "LoDTensorArray",
    "PlaceList",
]
_dtype2str_ = [
    "bool",
    "int16",
    "int32",
    "int64",
    "float16",
    "float32",
    "float64",
]


def repr_data_type(type):
    return _dtype2str_[type]


def repr_tensor(proto):
    return "tensor(type={}, shape={})".format(_dtype2str_[int(proto.data_type)],
                                              str(proto.dims))


reprtpl = "{ttype} {name} ({reprs})"


def repr_lodtensor(proto):
G
gongweibao 已提交
57 58 59 60 61
    if proto.type.type != framework_pb2.VarType.LOD_TENSOR:
        return

    level = proto.type.lod_tensor.lod_level
    reprs = repr_tensor(proto.type.lod_tensor.tensor)
62 63 64 65 66 67 68
    return reprtpl.format(
        ttype="LoDTensor" if level > 0 else "Tensor",
        name=proto.name,
        reprs="level=%d, %s" % (level, reprs) if level > 0 else reprs)


def repr_selected_rows(proto):
G
gongweibao 已提交
69 70 71
    if proto.type.type != framework_pb2.VarType.SELECTED_ROWS:
        return

72 73 74
    return reprtpl.format(
        ttype="SelectedRows",
        name=proto.name,
G
gongweibao 已提交
75
        reprs=repr_tensor(proto.type.selected_rows))
76 77 78


def repr_tensor_array(proto):
G
gongweibao 已提交
79 80 81
    if proto.type.type != framework_pb2.VarType.LOD_TENSOR_ARRAY:
        return

82 83 84
    return reprtpl.format(
        ttype="TensorArray",
        name=proto.name,
G
gongweibao 已提交
85 86
        reprs="level=%d, %s" % (proto.type.tensor_array.lod_level,
                                repr_tensor(proto.type.lod_tensor.tensor)))
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104


type_handlers = [
    repr_lodtensor,
    repr_selected_rows,
    repr_tensor_array,
]


def repr_var(vardesc):
    for handler in type_handlers:
        res = handler(vardesc)
        if res:
            return res


def pprint_program_codes(program_desc):
    reprs = []
G
gongweibao 已提交
105
    for block_idx in range(program_desc.desc.num_blocks()):
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        block_desc = program_desc.block(block_idx)
        block_repr = pprint_block_codes(block_desc)
        reprs.append(block_repr)
    return '\n'.join(reprs)


def pprint_block_codes(block_desc, show_backward=False):
    def is_op_backward(op_desc):
        if op_desc.type.endswith('_grad'): return True

        def is_var_backward(var):
            if "@GRAD" in var.parameter: return True
            for arg in var.arguments:
                if "@GRAD" in arg: return True

        for var in op_desc.inputs:
            if is_var_backward(var): return True
        for var in op_desc.outputs:
            if is_var_backward(var): return True
        return False

    def is_var_backward(var_desc):
        return "@GRAD" in var_desc.name

    if type(block_desc) is not framework_pb2.BlockDesc:
        block_desc = framework_pb2.BlockDesc.FromString(
G
gongweibao 已提交
132
            block_desc.desc.serialize_to_string())
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    var_reprs = []
    op_reprs = []
    for var in block_desc.vars:
        if not show_backward and is_var_backward(var):
            continue
        var_reprs.append(repr_var(var))

    for op in block_desc.ops:
        if not show_backward and is_op_backward(op): continue
        op_reprs.append(repr_op(op))

    tpl = "// block-{idx}  parent-{pidx}\n// variables\n{vars}\n\n// operators\n{ops}\n"
    return tpl.format(
        idx=block_desc.idx,
        pidx=block_desc.parent_idx,
        vars='\n'.join(var_reprs),
        ops='\n'.join(op_reprs), )


def repr_attr(desc):
    tpl = "{key}={value}"
    valgetter = [
        lambda attr: attr.i,
        lambda attr: attr.f,
        lambda attr: attr.s,
        lambda attr: attr.ints,
        lambda attr: attr.floats,
        lambda attr: attr.strings,
        lambda attr: attr.b,
        lambda attr: attr.bools,
        lambda attr: attr.block_idx,
        lambda attr: attr.l,
    ]
    key = desc.name
    value = valgetter[desc.type](desc)
    if key == "dtype":
        value = repr_data_type(value)
    return tpl.format(key=key, value=str(value)), (key, value)


def _repr_op_fill_constant(optype, inputs, outputs, attrs):
    if optype == "fill_constant":
        return "{output} = {data} [shape={shape}]".format(
            output=','.join(outputs),
            data=attrs['value'],
            shape=str(attrs['shape']))


op_repr_handlers = [_repr_op_fill_constant, ]


def repr_op(opdesc):
    optype = None
    attrs = []
    attr_dict = {}
    is_target = None
    inputs = []
    outputs = []

    tpl = "{outputs} = {optype}({inputs}{is_target}) [{attrs}]"
    args2value = lambda args: args[0] if len(args) == 1 else str(list(args))
    for var in opdesc.inputs:
        key = var.parameter
        value = args2value(var.arguments)
        inputs.append("%s=%s" % (key, value))
    for var in opdesc.outputs:
        value = args2value(var.arguments)
        outputs.append(value)
    for attr in opdesc.attrs:
        attr_repr, attr_pair = repr_attr(attr)
        attrs.append(attr_repr)
        attr_dict[attr_pair[0]] = attr_pair[1]

    is_target = opdesc.is_target

    for handler in op_repr_handlers:
        res = handler(opdesc.type, inputs, outputs, attr_dict)
        if res: return res

    return tpl.format(
        outputs=', '.join(outputs),
        optype=opdesc.type,
        inputs=', '.join(inputs),
        attrs="{%s}" % ','.join(attrs),
        is_target=", is_target" if is_target else "")

219 220 221 222 223 224 225 226 227 228

def draw_block_graphviz(block, highlights=None, path="./temp.dot"):
    '''
    Generate a debug graph for block.
    Args:
        block(Block): a block.
    '''
    graph = GraphPreviewGenerator("some graph")
    # collect parameters and args
    protostr = block.desc.serialize_to_string()
M
minqiyang 已提交
229
    desc = framework_pb2.BlockDesc.FromString(six.binary_type(protostr))
230 231 232 233 234 235 236 237 238 239 240 241

    def need_highlight(name):
        if highlights is None: return False
        for pattern in highlights:
            assert type(pattern) is str
            if re.match(pattern, name):
                return True
        return False

    # draw parameters and args
    vars = {}
    for var in desc.vars:
G
gongweibao 已提交
242
        # TODO(gongwb): format the var.type
243 244 245
        # create var
        if var.persistable:
            varn = graph.add_param(
G
gongweibao 已提交
246 247 248
                var.name,
                str(var.type).replace("\n", "<br />", 1),
                highlight=need_highlight(var.name))
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        else:
            varn = graph.add_arg(var.name, highlight=need_highlight(var.name))
        vars[var.name] = varn

    def add_op_link_var(op, var, op2var=False):
        for arg in var.arguments:
            if arg not in vars:
                # add missing variables as argument
                vars[arg] = graph.add_arg(arg, highlight=need_highlight(arg))
            varn = vars[arg]
            highlight = need_highlight(op.description) or need_highlight(
                varn.description)
            if op2var:
                graph.add_edge(op, varn, highlight=highlight)
            else:
                graph.add_edge(varn, op, highlight=highlight)

    for op in desc.ops:
        opn = graph.add_op(op.type, highlight=need_highlight(op.type))
        for var in op.inputs:
            add_op_link_var(opn, var, False)
        for var in op.outputs:
            add_op_link_var(opn, var, True)

G
gongweibao 已提交
273
    graph(path, show=False)