quantization_pass.py 28.1 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17
import six
W
WangZhen 已提交
18
from ..... import compat as cpt
W
WangZhen 已提交
19
from .... import core
20
from ....framework import IrGraph
21
from ....framework import Program
W
WangZhen 已提交
22 23 24
from ....initializer import Constant
from .... import unique_name

25 26 27 28
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
    'TransformForMobilePass'
]
W
WangZhen 已提交
29

W
WangZhen 已提交
30

31
class QuantizationTransformPass(object):
W
WangZhen 已提交
32
    def __init__(self,
33 34
                 scope=None,
                 program_exe=None,
W
WangZhen 已提交
35 36 37 38 39 40
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000):
        """
41
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
42
        activation quantization type.
43

W
WangZhen 已提交
44
        Args:
45 46 47 48 49
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
            type, this pass will create some new parameters. The scope is used to
            initialize these new parameters.
            program_exe(fluid.Executor): program_exe is used to initialize new
            parameters described above.
W
WangZhen 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
                now support 'abs_max', 'range_abs_max'. If use 'abs_max' mode,
                the quantization scale will be calculated dynamically each step
                in both training and testing period. If use 'range_abs_max',
                a static quantization scale will be calculated during training
                and used in inference.
            weight_quantize_type (str): quantization type for weights,
                support 'abs_max'. The 'range_abs_max' usually is not used for
                weight, since weights are fixed once the model is well trained.
            window_size (int): the window size for 'range_abs_max' quantization.
63

W
WangZhen 已提交
64 65
        Examples:
        .. code-block:: python
66 67 68 69
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
70
            from paddle.fluid.contrib.slim.graph import IrGraph
71 72
            from paddle.fluid import core

73
            graph = IrGraph(core.Graph(program.desc), for_test=False)
74 75 76 77
            exe = fluid.Executor(fluid.CPUPlace())
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
            exe)
            transform_pass.apply(graph)
W
WangZhen 已提交
78
        """
79 80 81 82
        self._scope = scope
        self._program_exe = program_exe
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
W
WangZhen 已提交
83 84 85 86 87 88 89 90 91 92 93

        quant_type = ['abs_max', 'range_abs_max']
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(activation_quantize_type))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(weight_quantize_type))

94 95 96
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
W
WangZhen 已提交
97

98 99 100 101
        self._need_initialized = collections.OrderedDict()
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
102
        ]
103 104
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
105

106
    def apply(self, graph):
107 108 109 110 111 112 113 114
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
115
        assert isinstance(graph,
116 117 118
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._need_initialized.clear()
        self._is_test = graph.is_test()
W
WangZhen 已提交
119 120
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
W
WangZhen 已提交
121
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
W
WangZhen 已提交
122 123 124 125 126 127

        def _transform_forward(graph, op):
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
128
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
129 130
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
131
                        in persistable_vars else self._activation_quantize_type
W
WangZhen 已提交
132 133 134 135 136
                    quant_var_node, scale_var_node = self._insert_quant_op(
                        graph, var_node, quant_bits, quant_type)
                    dequant_var_node = self._insert_dequant_op(
                        graph, quant_var_node, scale_var_node, quant_bits)
                    dequantized_vars[var_node.name()] = dequant_var_node
137
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
138 139 140 141 142 143

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
144
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
145 146 147 148
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
149

150
        if not self._is_test:
W
WangZhen 已提交
151 152
            self._create_global_step(graph)
        ops = graph.all_ops()
W
WangZhen 已提交
153 154
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
155
        for op in ops:
156
            if op.name() in self._quantizable_ops:
W
WangZhen 已提交
157
                _transform_forward(graph, op)
W
WangZhen 已提交
158 159
        # The loop for renaming the inputs of backward op.
        for op in ops:
160
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
161
                _transform_backward(graph, op)
W
WangZhen 已提交
162

163 164
        if len(self._need_initialized) > 0:
            assert self._scope is not None, \
165
            'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
166
            assert self._program_exe is not None, \
167 168
            'The program_exe cannot be set None when activation_quantize_type equals to range_abs_max.'
            init_program = Program()
169
            for var_desc, initializer in six.iteritems(self._need_initialized):
W
WangZhen 已提交
170 171 172 173 174 175 176
                var = init_program.global_block().create_var(
                    name=var_desc.name(),
                    shape=var_desc.shape(),
                    dtype=var_desc.dtype(),
                    type=var_desc.type(),
                    lod_level=var_desc.lod_level(),
                    persistable=var_desc.persistable())
177
                initializer(var, init_program.global_block())
178
            self._program_exe.run(program=init_program, scope=self._scope)
179 180

        return graph
W
WangZhen 已提交
181

W
WangZhen 已提交
182
    def _create_global_step(self, graph):
183 184
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
185
            counter_name = cpt.to_text('@STEP_COUNTER@')
W
WangZhen 已提交
186 187
            for node in graph.all_vars():
                if node.name() == counter_name:
188 189
                    self._global_step = node
            if self._global_step is None:
W
WangZhen 已提交
190 191 192 193 194
                global_step_in = graph.create_param_node(
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
195
                self._need_initialized[global_step_in.var()] = \
W
WangZhen 已提交
196 197 198
                    Constant(value=0, force_cpu=True)
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
199
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
200 201
                increment_op = graph.create_op_node(
                    op_type='increment',
202 203 204 205 206
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
207 208
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
209 210 211
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
212

W
WangZhen 已提交
213 214 215 216 217 218 219
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
220 221
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
W
WangZhen 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
241 242 243 244
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
245 246 247
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
248 249 250
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())

        scale_in_node = graph.create_param_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.var().dtype())
270
        self._need_initialized[scale_in_node.var()] = Constant(value=0.001)
W
WangZhen 已提交
271 272 273 274 275

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

276
        if not self._is_test:
W
WangZhen 已提交
277 278 279 280
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
            scales_node = graph.create_param_node(
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
281
                shape=[self._window_size],
W
WangZhen 已提交
282
                var_dtype=var_node.var().dtype())
283 284
            self._need_initialized[scales_node.var()] = Constant(value=0)
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
285 286
            outputs['OutScales'] = scales_node
        attrs = {
287
            'window_size': self._window_size,
W
WangZhen 已提交
288
            'bit_length': quant_bits,
289 290
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
291 292 293 294 295 296 297
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

298 299 300 301
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
302

303 304 305
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

        return quant_var_node, scale_out_node

    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
323 324 325 326
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
327 328 329
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
330 331 332
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
349
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
350 351
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
352 353 354


class QuantizationFreezePass(object):
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    """
    The freeze pass is used to adjust the quantize operator order, for example:
        1) `activation -> quant -> dequant -> conv2d` will be freezed into
        `activation -> quant -> conv2d -> dequant`
        2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
        and weight will be sacled offline.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        weight_bits (int): quantization bit number for weights.
        activation_bits (int): quantization bit number for activation.
        weight_quantize_type (str): quantization type for weights, support 'abs_max'.
        The 'range_abs_max' usually is not used for weight, since weights are fixed once the
        model is well trained.
    """

W
WangZhen 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._fake_quant_op_names = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
397 398 399 400 401 402
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
        ops = graph.all_ops()
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
                input_arg_name = op_node.op().input('X')[0]
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
                    else:
                        scale_v = self._load_var(op_node.op().output('OutScale')
                                                 [0])[0]
                    self._var_scale_map[input_arg_name] = scale_v
                else:
                    scale_v = graph.var_node(op_node.op().output('OutScale')[0])
                    self._var_scale_map[input_arg_name] = scale_v
                if input_arg_name in persistable_vars:
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
425
                                                    self._weight_bits)
W
WangZhen 已提交
426 427
                    self._restore_var(input_arg_name, quantized_param_v)

W
WangZhen 已提交
428
        ops = graph.all_ops()
W
WangZhen 已提交
429 430 431 432 433
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

W
WangZhen 已提交
434
        ops = graph.all_ops()
W
WangZhen 已提交
435 436 437 438 439 440 441 442 443 444 445
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                self._insert_post_dequant_op(graph, op_node)

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
                name = var_node.name()
                if name in self._op_output_rename_map:
                    old_in = graph.var_node(name)
W
WangZhen 已提交
446
                    new_in = self._op_output_rename_map[name]
W
WangZhen 已提交
447 448 449 450
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
451
        return graph
W
WangZhen 已提交
452 453 454 455 456 457 458 459

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
        k = op_node.op().output('Out')[0]
        v = op_node.op().input('X')[0]
        if v not in self._op_input_rename_map:
            self._op_input_rename_map[k] = v
        else:
            self._op_input_rename_map[k] = self._op_input_rename_map[v]
W
WangZhen 已提交
460
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
461 462 463 464 465

    def _insert_post_dequant_op(self, graph, op_node):
        max_range = None
        scale_var_node = None
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
W
WangZhen 已提交
466
        for var_node in op_node.inputs:
W
WangZhen 已提交
467 468 469 470
            name = var_node.name()
            if name in self._op_input_rename_map:
                old_in = graph.var_node(name)
                new_in = graph.var_node(self._op_input_rename_map[name])
W
WangZhen 已提交
471
                new_in.clear_outputs()
W
WangZhen 已提交
472 473
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
474
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
475 476 477 478 479 480 481 482 483 484 485
            if original_var_name in persistable_vars:
                param_range = (1 << (self._weight_bits - 1)) - 1
                act_range = (1 << (self._activation_bits - 1)) - 1
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
                max_range = param_range * act_range / scale_v
            else:
                assert isinstance(scale_v, core.Node)
                scale_var_node = self._var_scale_map[original_var_name]

W
WangZhen 已提交
486
        if len(op_node.outputs) != 1:
W
WangZhen 已提交
487 488 489
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

W
WangZhen 已提交
490
        output_var_node = op_node.outputs[0]
W
WangZhen 已提交
491 492 493 494 495 496 497
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.var().type(),
            shape=output_var_node.var().shape(),
            var_dtype=output_var_node.var().dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
498 499 500 501
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
502 503 504 505 506 507
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
508
        self._op_output_rename_map[output_var_node.name()] = dequant_var_node
W
WangZhen 已提交
509 510 511 512 513
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

514 515 516
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_ops()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_unused_vars = graph.all_vars() - all_used_vars
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
551
    def _is_float(self, v):
W
WangZhen 已提交
552 553 554
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
555
    def _quant(self, x, scale, num_bits):
W
WangZhen 已提交
556
        return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
557 558 559


class ConvertToInt8Pass(object):
560 561 562 563 564 565 566 567 568
    """
    Convert the weights into int8_t type.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
        8bits weight tensors.
    """

569 570 571 572 573 574 575 576 577 578
    def __init__(self, scope, place):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']

    def apply(self, graph):
579 580 581 582 583 584 585
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
        """
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
        ops = graph.all_ops()
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
        int8_var_node = graph.create_param_node(
            name=cpt.to_text(int8_var_node_name),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_ops()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_unused_vars = graph.all_vars() - all_used_vars
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
639 640 641 642
    """
    This pass is used to convert the freezed graph for paddle-mobile execution.
    """

643 644 645 646 647 648 649
    def __init__(self):
        self._fake_quant_op_names = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']

    def apply(self, graph):
650 651 652 653 654 655 656 657
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
        """
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        ops = graph.all_ops()
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
                op_node.op().set_type('quantize')
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
                op_node.op().set_type('dequantize')
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)

        return graph