instance_norm_op.cu 31.9 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include <cfloat>
#include <string>
#include <vector>
19
#ifdef __NVCC__
L
lvmengsi 已提交
20
#include "cub/cub.cuh"
21 22 23 24 25
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
L
lvmengsi 已提交
26 27 28
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/instance_norm_op.h"
#include "paddle/fluid/operators/math/math_function.h"
29
#ifdef PADDLE_WITH_CUDA
L
lvmengsi 已提交
30
#include "paddle/fluid/platform/cudnn_helper.h"
31 32 33 34
#endif
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif
L
lvmengsi 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;

template <typename T>
static __global__ void repeat_param(const T *input, T *output,
                                    const int repeat_num, const int C) {
49
  CUDA_KERNEL_LOOP(i, repeat_num * C) {
L
lvmengsi 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    int index = i % C;
    output[i] = input[index];
  }
}

template <typename T, int BlockDim, bool AVG>
static __global__ void add_param(const T *input, T *output,
                                 const int repeat_num, const int C) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ou_storage;
  for (int i = blockIdx.x; i < C; i += gridDim.x) {
    T ou = static_cast<T>(0);
    for (int j = threadIdx.x; j < repeat_num; j += blockDim.x) {
      const int index = j * C + i;
      ou += static_cast<T>(input[index]);
    }
    ou = BlockReduce(ou_storage).Reduce(ou, cub::Sum());
    if (threadIdx.x == 0) {
      output[i] = ou;
    }
    __syncthreads();

    if (AVG) {
      output[i] /= repeat_num;
    }
  }
}

template <typename T>
class InstanceNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
C
ceci3 已提交
83 84 85
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("It must be CUDAPlace."));
L
lvmengsi 已提交
86 87 88 89
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));

    auto *x = ctx.Input<Tensor>("X");
    auto &x_dims = x->dims();
C
ceci3 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The `shape` in InstanceNormOp is invalid: "
                          "the size of X's dimensions must greater than "
                          "or equal to 2. But received: "
                          "the size of X's dimensions is [%d]",
                          x_dims.size()));
    PADDLE_ENFORCE_LE(x_dims.size(), 5,
                      platform::errors::InvalidArgument(
                          "The `shape` in InstanceNormOp is invalid: "
                          "the size of X's dimensions must smaller than"
                          "or equal to 5. But received: "
                          "the size of X's dimensions is [%d]",
                          x_dims.size()));
L
lvmengsi 已提交
104 105 106 107 108 109 110 111 112
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, DataLayout::kNCHW, &N, &C, &H, &W, &D);
    int NxC = N * C;
    Tensor x_tmp;
    x_tmp.ShareDataWith(*x).Resize({1, NxC, H, W, D});

    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

113 114 115 116 117 118 119 120 121
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t data_desc_;
    miopenTensorDescriptor_t in_param_desc_;

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&in_param_desc_));
#else
L
lvmengsi 已提交
122 123 124
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t in_param_desc_;

125 126 127
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
L
lvmengsi 已提交
128
        platform::dynload::cudnnCreateTensorDescriptor(&in_param_desc_));
129
#endif
L
lvmengsi 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);

    VLOG(3) << "Setting descriptors.";
    std::vector<int> dims;
    std::vector<int> strides;
    dims = {1, NxC, H, W, D};
    strides = {NxC * H * W * D, H * W * D, W * D, D, 1};

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

145 146 147 148 149 150 151 152 153
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
        const_cast<int *>(strides.data())));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDeriveBNTensorDescriptor(
            in_param_desc_, data_desc_, miopenBNSpatial));
#else
154
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
L
lvmengsi 已提交
155 156
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
157 158 159
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDeriveBNTensorDescriptor(
            in_param_desc_, data_desc_, CUDNN_BATCHNORM_SPATIAL));
160
#endif
L
lvmengsi 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

    Tensor scale_tmp =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
    scale_tmp.mutable_data<T>(ctx.GetPlace());
    Tensor bias_tmp =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
    bias_tmp.mutable_data<T>(ctx.GetPlace());

    const int n = x->numel();
    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    const int grid = std::min((NxC + block - 1) / block, max_blocks);

C
ceci3 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190
    math::SetConstant<platform::CUDADeviceContext, T> set_constant;
    if (scale) {
      repeat_param<T><<<grid, block, 0, dev_ctx.stream()>>>(
          scale->data<T>(), scale_tmp.data<T>(), N, C);
    } else {
      set_constant(dev_ctx, &scale_tmp, static_cast<T>(1));
    }
    if (bias) {
      repeat_param<T><<<grid, block, 0, dev_ctx.stream()>>>(
          bias->data<T>(), bias_tmp.data<T>(), N, C);
    } else {
      set_constant(dev_ctx, &bias_tmp, static_cast<T>(0));
    }
L
lvmengsi 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203

    auto handle = dev_ctx.cudnn_handle();

    math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
        functor;

    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
    saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
    functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenBatchNormalizationForwardTraining(
            handle, miopenBNSpatial,
            const_cast<void *>(
                static_cast<const void *>(CudnnDataType<T>::kOne())),
            const_cast<void *>(
                static_cast<const void *>(CudnnDataType<T>::kZero())),
            data_desc_, static_cast<const void *>(x_tmp.template data<T>()),
            data_desc_,
            static_cast<void *>(y->template mutable_data<T>(ctx.GetPlace())),
            in_param_desc_,
            const_cast<void *>(static_cast<const void *>(
                scale_tmp.template data<BatchNormParamType<T>>())),
            const_cast<void *>(static_cast<const void *>(
                bias_tmp.template data<BatchNormParamType<T>>())),
            0, nullptr, nullptr, epsilon,
            static_cast<void *>(
                saved_mean->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace())),
            static_cast<void *>(
                saved_variance->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()))));

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(in_param_desc_));
#else
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnBatchNormalizationForwardTraining(
            handle, CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
            CudnnDataType<T>::kZero(), data_desc_, x_tmp.template data<T>(),
            data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
            in_param_desc_, scale_tmp.template data<BatchNormParamType<T>>(),
            bias_tmp.template data<BatchNormParamType<T>>(), 0, nullptr,
            nullptr, epsilon,
            saved_mean->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            saved_variance->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace())));

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
L
lvmengsi 已提交
249
        platform::dynload::cudnnDestroyTensorDescriptor(in_param_desc_));
250
#endif
L
lvmengsi 已提交
251 252 253
  }
};

L
lvmengsi 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
template <typename T, int BlockDim>
static __global__ void GradComputeDX(const T *dy,
                                     const BatchNormParamType<T> *scale,
                                     const BatchNormParamType<T> *mean,
                                     const T *x,
                                     const BatchNormParamType<T> *variance,
                                     const int C, const int sample_size,
                                     T *dx) {
  int beg_idx = blockIdx.x * sample_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * sample_size;
  int ncid = blockIdx.x;
  int c = ncid % C;

  BatchNormParamType<T> mean_val = mean[ncid];
  BatchNormParamType<T> inv_var_val = variance[ncid];

  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage dy_x_sub_mean_storage;
  __shared__ BatchNormParamType<T> dy_sum_val;
  __shared__ BatchNormParamType<T> dy_x_sub_mean_sum_val;

  BatchNormParamType<T> dy_sum = static_cast<BatchNormParamType<T>>(0);
  BatchNormParamType<T> dy_x_sub_mean_sum =
      static_cast<BatchNormParamType<T>>(0);

  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    BatchNormParamType<T> dy_i = static_cast<BatchNormParamType<T>>(dy[i]);
    dy_sum += dy_i;
    dy_x_sub_mean_sum +=
        dy_i * (static_cast<BatchNormParamType<T>>(x[i]) - mean_val);
  }
  dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
  dy_x_sub_mean_sum =
      BlockReduce(dy_x_sub_mean_storage).Reduce(dy_x_sub_mean_sum, cub::Sum());

  if (threadIdx.x == 0) {
    dy_sum_val = dy_sum;
    dy_x_sub_mean_sum_val = dy_x_sub_mean_sum;
  }
  __syncthreads();

  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    dx[i] =
        (static_cast<BatchNormParamType<T>>(dy[i]) -
         dy_sum_val / static_cast<BatchNormParamType<T>>(sample_size) -
         (static_cast<BatchNormParamType<T>>(x[i]) - mean_val) *
             dy_x_sub_mean_sum_val * inv_var_val * inv_var_val / sample_size) *
        scale[c] * inv_var_val;
  }
}

L
lvmengsi 已提交
306 307 308 309 310
template <typename T>
class InstanceNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
C
ceci3 已提交
311 312 313
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
lvmengsi 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    const auto &x_dims = x->dims();

    int N, C, H, W, D;
    ExtractNCWHD(x_dims, DataLayout::kNCHW, &N, &C, &H, &W, &D);
    int NxC = N * C;

    Tensor x_tmp, d_y_tmp;
    x_tmp.ShareDataWith(*x).Resize({1, NxC, H, W, D});
    d_y_tmp.ShareDataWith(*d_y).Resize({1, NxC, H, W, D});

    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
    }
C
ceci3 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    if (scale) {
      PADDLE_ENFORCE_EQ(
          scale->dims().size(), 1UL,
          platform::errors::InvalidArgument(
              "The `shape` in InstanceNormOp is invalid: "
              "the size of scale's dimensions must be equal to 1. But "
              "received: the size of scale's dimensions"
              "is [%d]",
              scale->dims().size()));
      PADDLE_ENFORCE_EQ(scale->dims()[0], C,
                        platform::errors::InvalidArgument(
                            "The `shape` in InstanceNormOp is invalid: "
                            "the first dimension of scale must be equal to "
                            "Channels([%d]). But received: "
                            "the first dimension of scale is [%d],"
                            "the dimensions of scale is [%s], ",
                            C, scale->dims()[0], scale->dims()));
    }
L
lvmengsi 已提交
356 357

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
C
ceci3 已提交
358
    math::SetConstant<platform::CUDADeviceContext, T> set_constant;
L
lvmengsi 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

    const int n = x->numel();
    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    const int grid = std::min(NxC, max_blocks);
    const int grid1 = (C + block - 1) / block;

    Tensor scale_tmp =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
    scale_tmp.mutable_data<T>(ctx.GetPlace());
    Tensor d_scale_tmp =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
    Tensor d_bias_tmp =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
C
ceci3 已提交
374 375 376 377 378 379
    if (scale) {
      repeat_param<T><<<grid, block, 0, dev_ctx.stream()>>>(
          scale->data<T>(), scale_tmp.data<T>(), N, C);
    } else {
      set_constant(dev_ctx, &scale_tmp, static_cast<T>(1));
    }
L
lvmengsi 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    std::vector<int> dims;
    std::vector<int> strides;
    dims = {1, NxC, H, W, D};
    strides = {NxC * H * W * D, H * W * D, W * D, D, 1};

    if ((H * W * D) == 1) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
      math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
          functor;
      functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
      functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
      return;
    }

395 396 397 398 399 400 401 402 403
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t data_desc_;
    miopenTensorDescriptor_t in_param_desc_;

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&in_param_desc_));
#else
L
lvmengsi 已提交
404 405 406
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t in_param_desc_;

407 408 409
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
L
lvmengsi 已提交
410
        platform::dynload::cudnnCreateTensorDescriptor(&in_param_desc_));
411 412
#endif

L
lvmengsi 已提交
413 414 415 416 417 418 419
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);

420 421 422 423 424 425 426 427 428
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
        const_cast<int *>(strides.data())));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDeriveBNTensorDescriptor(
            in_param_desc_, data_desc_, miopenBNSpatial));
#else
429
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
L
lvmengsi 已提交
430 431
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
432 433 434
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDeriveBNTensorDescriptor(
            in_param_desc_, data_desc_, CUDNN_BATCHNORM_SPATIAL));
435
#endif
L
lvmengsi 已提交
436 437 438

    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
L
lvmengsi 已提交
439
    const auto *saved_mean_data =
L
lvmengsi 已提交
440
        saved_mean->template data<BatchNormParamType<T>>();
L
lvmengsi 已提交
441
    const auto *saved_var_data =
L
lvmengsi 已提交
442
        saved_var->template data<BatchNormParamType<T>>();
L
lvmengsi 已提交
443
    if (d_scale && d_bias) {
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenBatchNormalizationBackward(
              dev_ctx.cudnn_handle(), miopenBNSpatial, CudnnDataType<T>::kOne(),
              CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
              CudnnDataType<T>::kZero(), data_desc_, x_tmp.template data<T>(),
              data_desc_, d_y_tmp.template data<T>(), data_desc_,
              d_x->template mutable_data<T>(ctx.GetPlace()), in_param_desc_,
              scale_tmp.template data<BatchNormParamType<T>>(),
              d_scale_tmp.template mutable_data<BatchNormParamType<T>>(
                  ctx.GetPlace()),
              d_bias_tmp.template mutable_data<BatchNormParamType<T>>(
                  ctx.GetPlace()),
              epsilon, saved_mean_data, saved_var_data));
#else
459 460 461 462 463 464 465 466 467 468 469 470 471
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnBatchNormalizationBackward(
              dev_ctx.cudnn_handle(), CUDNN_BATCHNORM_SPATIAL,
              CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
              CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(), data_desc_,
              x_tmp.template data<T>(), data_desc_, d_y_tmp.template data<T>(),
              data_desc_, d_x->template mutable_data<T>(ctx.GetPlace()),
              in_param_desc_, scale_tmp.template data<BatchNormParamType<T>>(),
              d_scale_tmp.template mutable_data<BatchNormParamType<T>>(
                  ctx.GetPlace()),
              d_bias_tmp.template mutable_data<BatchNormParamType<T>>(
                  ctx.GetPlace()),
              epsilon, saved_mean_data, saved_var_data));
472
#endif
L
lvmengsi 已提交
473 474
    } else {
      if (d_x) {
C
ceci3 已提交
475
        GradComputeDX<T, block><<<NxC, block, 0, dev_ctx.stream()>>>(
C
ceci3 已提交
476
            d_y->data<T>(), scale_tmp.data<BatchNormParamType<T>>(),
L
lvmengsi 已提交
477 478 479 480
            saved_mean_data, x->data<T>(), saved_var_data, C, H * W * D,
            d_x->data<T>());
      }
    }
L
lvmengsi 已提交
481 482 483 484 485 486 487 488

    if (d_scale && d_bias) {
      add_param<T, block, false><<<grid1, block, 0, dev_ctx.stream()>>>(
          d_scale_tmp.data<T>(), d_scale->data<T>(), N, C);
      add_param<T, block, false><<<grid1, block, 0, dev_ctx.stream()>>>(
          d_bias_tmp.data<T>(), d_bias->data<T>(), N, C);
    }

489 490 491 492 493 494
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(in_param_desc_));
#else
495 496 497
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
L
lvmengsi 已提交
498
        platform::dynload::cudnnDestroyTensorDescriptor(in_param_desc_));
499
#endif
L
lvmengsi 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
  }
};

static __device__ __forceinline__ float real_sqrt(float x) {
  return 1. / sqrtf(x);
}
static __device__ __forceinline__ double real_sqrt(double x) {
  return 1. / sqrt(x);
}

template <typename T, int BlockDim>
__global__ void DoubleGradComputeDX(const T *x, const T *mean,
                                    const T *variance, const T *ddx,
                                    const T *dy, const T *scale,
                                    const T *ddscale, int C, int sample_size,
                                    const double epsilon, T *dx) {
  int beg_idx = blockIdx.x * sample_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * sample_size;
  int ncid = blockIdx.x;
  int c = ncid % C;

  T mean_val = mean[ncid];
  T var_val = variance[ncid];

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage ddx_storage;
  __shared__ typename BlockReduce::TempStorage dy_mul_ddx_storage;
  __shared__ typename BlockReduce::TempStorage dy_mul_x_sub_mean_storage;
  __shared__ typename BlockReduce::TempStorage ddx_mul_x_sub_mean_storage;
  __shared__ T dy_sum_val;
  __shared__ T ddx_sum_val;
  __shared__ T dy_mul_ddx_sum_val;
  __shared__ T dy_mul_x_sub_mean_sum_val;
  __shared__ T ddx_mul_x_sub_mean_sum_val;

  T dy_sum = 0;
  T ddx_sum = 0;
  T dy_mul_ddx_sum = 0;
  T dy_mul_x_sub_mean_sum = 0;
  T ddx_mul_x_sub_mean_sum = 0;
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    T ddx_i = ddx[i];
    T dy_i = dy[i];
    T tmp = x[i] - mean_val;

    dy_sum += dy_i;
    ddx_sum += ddx_i;
    dy_mul_ddx_sum += (ddx_i * dy_i);

    dy_mul_x_sub_mean_sum += (dy_i * tmp);
    ddx_mul_x_sub_mean_sum += (ddx_i * tmp);
  }

  dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
  ddx_sum = BlockReduce(ddx_storage).Reduce(ddx_sum, cub::Sum());
  dy_mul_ddx_sum =
      BlockReduce(dy_mul_ddx_storage).Reduce(dy_mul_ddx_sum, cub::Sum());
  dy_mul_x_sub_mean_sum = BlockReduce(dy_mul_x_sub_mean_storage)
                              .Reduce(dy_mul_x_sub_mean_sum, cub::Sum());
  ddx_mul_x_sub_mean_sum = BlockReduce(ddx_mul_x_sub_mean_storage)
                               .Reduce(ddx_mul_x_sub_mean_sum, cub::Sum());

  if (threadIdx.x == 0) {
    dy_sum_val = dy_sum;
    ddx_sum_val = ddx_sum;
    dy_mul_ddx_sum_val = dy_mul_ddx_sum;
    dy_mul_x_sub_mean_sum_val = dy_mul_x_sub_mean_sum;
    ddx_mul_x_sub_mean_sum_val = ddx_mul_x_sub_mean_sum;
  }
  __syncthreads();

  if (ddx != nullptr) {
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      dx[i] +=
          ((x[i] - mean_val) * var_val * var_val * var_val / sample_size *
               (ddx_sum_val * dy_sum_val / sample_size - dy_mul_ddx_sum_val +
                3. * dy_mul_x_sub_mean_sum_val * var_val *
                    ddx_mul_x_sub_mean_sum_val * var_val / sample_size) +
           ddx_mul_x_sub_mean_sum_val * var_val / sample_size * var_val *
               var_val * (dy_sum_val / sample_size - dy[i]) +
           dy_mul_x_sub_mean_sum_val * var_val / sample_size * var_val *
               var_val * (ddx_sum_val / sample_size - ddx[i])) *
          scale[c];
    }
  }
  __syncthreads();
  if (ddscale != nullptr) {
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      dx[i] += (dy[i] * var_val - dy_sum_val / sample_size * var_val -
                (x[i] - mean_val) * var_val * dy_mul_x_sub_mean_sum_val *
                    var_val / sample_size) *
               ddscale[c];
    }
  }
}

template <typename T, int BlockDim>
__global__ void DoubleGradComputeDDY(const T *x, const T *mean,
                                     const T *variance, const T *ddscale,
                                     const T *ddbias, const T *ddx,
                                     const T *scale, int C, int sample_size,
                                     const double epsilon, T *ddy) {
  int beg_idx = blockIdx.x * sample_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * sample_size;
  int ncid = blockIdx.x;
  int c = ncid % C;

  T mean_val = mean[ncid];
  T var_val = variance[ncid];

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ddx_storage;
  __shared__ typename BlockReduce::TempStorage ddx_mul_x_sub_mean_storage;
  __shared__ T ddx_sum_val;
  __shared__ T ddx_mul_x_sub_mean_sum_val;

  T ddx_sum = 0;
  T ddx_mul_x_sub_mean_sum = 0;
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    T ddx_i = ddx[i];
    ddx_sum += ddx_i;
    ddx_mul_x_sub_mean_sum += (ddx_i * (x[i] - mean_val));
  }
  ddx_sum = BlockReduce(ddx_storage).Reduce(ddx_sum, cub::Sum());
  ddx_mul_x_sub_mean_sum = BlockReduce(ddx_mul_x_sub_mean_storage)
                               .Reduce(ddx_mul_x_sub_mean_sum, cub::Sum());

  if (threadIdx.x == 0) {
    ddx_sum_val = ddx_sum;
    ddx_mul_x_sub_mean_sum_val = ddx_mul_x_sub_mean_sum;
  }
  __syncthreads();

  if (ddx != nullptr) {
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      ddy[i] += scale[c] * var_val *
                (ddx[i] - ddx_sum_val / sample_size -
                 (x[i] - mean_val) * var_val * ddx_mul_x_sub_mean_sum_val *
                     var_val / sample_size);
    }
  }
  __syncthreads();
  if (ddscale != nullptr) {
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      ddy[i] += (x[i] - mean_val) * var_val * ddscale[c];
    }
  }
  __syncthreads();
  if (ddbias != nullptr) {
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      ddy[i] += ddbias[c];
    }
  }
}

template <typename T, int BlockDim>
__global__ void DoubleGradComputeDScale(const T *x, const T *mean,
                                        const T *variance, const T *ddx,
                                        const T *dy, int C, int sample_size,
                                        const double epsilon, T *dscale) {
  int beg_idx = blockIdx.x * sample_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * sample_size;
  int ncid = blockIdx.x;
  int c = ncid % C;

  T mean_val = mean[ncid];
  T var_val = variance[ncid];

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage dy_mul_x_sub_mean_storage;
  __shared__ typename BlockReduce::TempStorage dscale_tmp_storage;
  __shared__ T dy_sum_val;
  __shared__ T dy_mul_x_sub_mean_sum_val;

  T dy_sum = 0;
  T dy_mul_x_sub_mean_sum = 0;
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    T dy_i = dy[i];
    dy_sum += dy_i;
    dy_mul_x_sub_mean_sum += (dy_i * (x[i] - mean_val));
  }
  dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
  dy_mul_x_sub_mean_sum = BlockReduce(dy_mul_x_sub_mean_storage)
                              .Reduce(dy_mul_x_sub_mean_sum, cub::Sum());

  if (threadIdx.x == 0) {
    dy_sum_val = dy_sum;
    dy_mul_x_sub_mean_sum_val = dy_mul_x_sub_mean_sum;
  }
  __syncthreads();

  if (ddx != nullptr) {
    T dscale_tmp = 0;
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      dscale_tmp +=
          ddx[i] * var_val * (dy[i] - dy_sum_val / sample_size -
                              dy_mul_x_sub_mean_sum_val * (x[i] - mean_val) *
                                  var_val * var_val / sample_size);
    }
    dscale_tmp = BlockReduce(dscale_tmp_storage).Reduce(dscale_tmp, cub::Sum());

    if (threadIdx.x == 0) {
      dscale[ncid] += dscale_tmp;
    }
    __syncthreads();
  }
}

template <typename T>
class InstanceNormDoubleGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *X = ctx.Input<Tensor>("X");
    const auto *Scale = ctx.Input<Tensor>("Scale");
    const auto *dY = ctx.Input<Tensor>("DY");
    const auto *Saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *Saved_variance = ctx.Input<Tensor>("SavedVariance");
    const auto *running_mean = ctx.Input<Tensor>("Mean");
    const auto *running_var = ctx.Input<Tensor>("Variance");
    const auto *ddX = ctx.Input<Tensor>("DDX");
    const auto *ddScale = ctx.Input<Tensor>("DDScale");
    const auto *ddBias = ctx.Input<Tensor>("DDBias");
    const double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));

    auto *dX = ctx.Output<Tensor>("DX");
    auto *dScale = ctx.Output<Tensor>("DScale");
    auto *ddY = ctx.Output<Tensor>("DDY");

    const T *x_data = X->data<T>();
    const T *dy_data = dY->data<T>();
    const T *ddx_data = (ddX == nullptr ? nullptr : ddX->data<T>());

    const T *ddscale_data = (ddScale == nullptr ? nullptr : ddScale->data<T>());
    const T *ddbias_data = (ddScale == nullptr ? nullptr : ddBias->data<T>());

    const T *mean_data = Saved_mean->data<T>();
    const T *variance_data = Saved_variance->data<T>();

C
ceci3 已提交
741 742 743
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    math::SetConstant<platform::CUDADeviceContext, T> set_zero;

L
lvmengsi 已提交
744 745 746 747 748 749 750
    auto &x_dims = X->dims();
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, DataLayout::kNCHW, &N, &C, &H, &W, &D);
    int NxC = N * C;
    const int n = X->numel();
    int sample_size = n / N / C;

C
ceci3 已提交
751 752 753 754 755 756 757
    Tensor scale_tmp;
    if (!Scale) {
      scale_tmp.mutable_data<T>({C}, ctx.GetPlace());
      set_zero(dev_ctx, &scale_tmp, static_cast<T>(1));
    }
    const T *scale_data = Scale ? Scale->data<T>() : scale_tmp.data<T>();

L
lvmengsi 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    const int grid = NxC;
    const int grid1 = (C + block - 1) / block;

    if (dX) {
      T *dx_data = dX->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, dX, static_cast<T>(0));
      DoubleGradComputeDX<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
          x_data, mean_data, variance_data, ddx_data, dy_data, scale_data,
          ddscale_data, C, sample_size, epsilon, dx_data);
    }
    if (dScale) {
      Tensor dscale_tmp =
          ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
      set_zero(dev_ctx, &dscale_tmp, static_cast<T>(0));
      T *dscale_tmp_data = dscale_tmp.mutable_data<T>(ctx.GetPlace());

      T *dscale_data = dScale->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, dScale, static_cast<T>(0));
      DoubleGradComputeDScale<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
          x_data, mean_data, variance_data, ddx_data, dy_data, C, sample_size,
          epsilon, dscale_tmp_data);
      add_param<T, block, false><<<grid1, block, 0, dev_ctx.stream()>>>(
          dscale_tmp.data<T>(), dScale->data<T>(), N, C);
    }
    if (ddY) {
      T *ddy_data = ddY->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, ddY, static_cast<T>(0));
      DoubleGradComputeDDY<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
          x_data, mean_data, variance_data, ddscale_data, ddbias_data, ddx_data,
          scale_data, C, sample_size, epsilon, ddy_data);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
800 801 802 803 804 805 806 807 808 809 810
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(
    instance_norm, ops::InstanceNormKernel<plat::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
    instance_norm_grad,
    ops::InstanceNormGradKernel<plat::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(instance_norm_grad_grad,
                        ops::InstanceNormDoubleGradKernel<
                            paddle::platform::CUDADeviceContext, float>);
#else
L
lvmengsi 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823
REGISTER_OP_CUDA_KERNEL(
    instance_norm, ops::InstanceNormKernel<plat::CUDADeviceContext, float>,
    ops::InstanceNormKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    instance_norm_grad,
    ops::InstanceNormGradKernel<plat::CUDADeviceContext, float>,
    ops::InstanceNormGradKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    instance_norm_grad_grad,
    ops::InstanceNormDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                      float>,
    ops::InstanceNormDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                      double>);
824
#endif