convert_operators.py 25.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
import re
import paddle
from paddle.fluid.data_feeder import convert_dtype
18
from paddle.jit.dy2static.variable_trans_func import (
19
    to_static_variable,
20
)
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
from paddle.fluid.framework import core, Variable
from paddle.fluid.layers import Assert, Print
from paddle.fluid.layers import (
    array_read,
    array_write,
)
from paddle.fluid.layers import (
    assign,
    fill_constant,
)
from paddle.fluid.layers import (
    cast,
    control_flow,
)
from paddle.fluid.layers.control_flow import (
    cond,
    while_loop,
    increment,
)
from .return_transformer import (
    RETURN_NO_VALUE_VAR_NAME,
)
43
from paddle.jit.dy2static.utils import (
44 45 46
    UndefinedVar,
    Dygraph2StaticException,
)
47
from paddle.jit.dy2static.utils import GetterSetterHelper
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
from paddle.fluid.layers.utils import copy_mutable_vars


def convert_attr(x, attr):
    if isinstance(x, Variable) and attr == "size":
        return x.size()
    else:
        return getattr(x, attr)


def indexable(x, code=None):
    if isinstance(x, Variable):
        return x
    if hasattr(x, '__len__') and hasattr(x, '__getitem__'):
        return x
    if hasattr(x, '__iter__'):
        return [i for i in x]
    else:
        raise RuntimeError("X can't be convert into indexable.")


def unpack_by_structure(target, structure):
    """unified unpack interface for paddle and python."""
    if isinstance(target, Variable):
        return _unpack_by_structure_paddle(target, structure)
    else:
        return _unpack_by_structure_python(target, structure)


def _unpack_by_structure_python(target, structure):
    """TODO(xiongkun): analysis the differences between python and paddle unpack."""
    return _unpack_by_structure_paddle(target, structure)


def _unpack_by_structure_paddle(target, structure):
    if structure == 1:
        return target
    ret = []
    for idx, ele in enumerate(structure):
        if ele == 1:
            ret.append(target[idx])
            continue
        if isinstance(ele, list):
            ret.append(unpack_by_structure(target[idx], ele))
            continue
        assert False, "structure element must be 1 or list"
    return ret


def convert_while_loop(
    cond, body, getter, setter, return_name_ids=None, push_pop_names=None
):
    """
    A function representation of a Python ``while`` statement.

    Args:
        cond(Callable): A callable object that returns a boolean variable to control whether to execute the loop body. It takes ``loop_vars`` as arguments.
        body(Callable): A callable object that returns a tuple or list of variables with the same arguments ``loops_vars`` as ``cond`` .
        get_args(callable): Get all arguments that needed in true_fn and false_fn.
        set_args(callable): Update arguments that modified in trure_fn and false_fn.
        return_name_ids(list[string], optional): the returned names.
        push_pop_names(list[string], optional): the names on which called .append() or .pop().

    Returns:
        A list or tuple of variables which returned by ``body``.
    """

    # NOTE: It may be slower if cond is very expensive, but usually cond is just O(1).
    # If loop_vars is changed during cond callable, then it causes bug, but current logical_and/logical_not/... doesn't change the loop_vars.
    pred = cond()
    if isinstance(pred, Variable):
        _run_paddle_while(
            cond, body, getter, setter, return_name_ids, push_pop_names
        )
    else:
        _run_py_while(cond, body, getter, setter)


def _convert_tensor_arrray_if_necessary(setterhelper, push_pop_names):
    push_pop_vars = setterhelper.get(push_pop_names)
    if push_pop_vars is None:
        return

    def maybe_to_tensor_array(v):
        if isinstance(v, list):
133
            return paddle.tensor.create_array("float32", initialized_list=v)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
        else:
            return v

    setterhelper.set(
        push_pop_names, [maybe_to_tensor_array(v) for v in push_pop_vars]
    )


def _run_paddle_while(
    cond, body, getter, setter, return_name_ids, push_pop_names
):
    # NOTE: loop_vars of Paddle op `control_flow.while_loop` must be Paddle Tensors.
    helper = GetterSetterHelper(getter, setter, return_name_ids, push_pop_names)
    _convert_tensor_arrray_if_necessary(helper, push_pop_names)

    def new_body_fn(*args):
        """wrap the body() and add return value for `while_loop`
        the args may be differ from getter().
        """
        mutable_loop_vars = args
        helper.set(return_name_ids, mutable_loop_vars)
        body()
        return helper.get(return_name_ids)

    def new_cond_fn(*args):
        """cond is a zero-args function, which is not
        compatible with `while_loop`.
        """
        return cond()

    # UndefinedVar will become data layer not check variable with value=NO_VALUE_MAGIC.
    loop_vars = [
        to_static_variable(var) if not isinstance(var, UndefinedVar) else var
        for var in helper.get(return_name_ids)
    ]
    helper.set(
        return_name_ids, loop_vars
    )  # change the non-local var to variable
    # variable maybe modified to inner var. change it into
    loop_vars = control_flow.while_loop(new_cond_fn, new_body_fn, loop_vars)
    helper.set(return_name_ids, loop_vars)
    return loop_vars


def _run_py_while(cond, body, getter, setter):
    while True:
        pred = cond()
        if isinstance(pred, Variable):
            raise Dygraph2StaticException(
                "python while pred change from bool to variable."
            )
        if not pred:
            break
        body()


def convert_logical_and(x_func, y_func):
    """
    A function representation of a Python ``and`` statement.

    Args:
        x_func(callable): x_func() is the left hand operand of ``and`` operator. x_func() is bool or Tensor.
        y_func(callable): y_func() is the right hand operand of ``and`` operator.  y_func() is bool or Tensor.

    Returns:
        A python bool variable or a bool Tensor.

    NOTE(liym27):
        1) The operands are executed sequentially according to the running logic of Python. So here the arguments
        should be callable.
        2) If the left hand operand is False, the right hand operand should be executed.

        For example:
            a = x > 1 and y < 1
        Transformed code:
            a = paddle.jit.dy2static.convert_logical_and(lambda:x>1, lambda:y<1)

          In `convert_logical_and(lambda:x>1, lambda:y<1)`, `lambda:y<1` must be run after `lambda:x>1`. And
        if `x>1` is False, `y<1` should NOT be run.
    """
    x_value = x_func()
    if not isinstance(x_value, Variable):
        return _run_py_logical_and(lambda: x_value, y_func)

    y_value = y_func()
    if not isinstance(y_value, Variable):
        return _run_py_logical_and(lambda: y_value, lambda: x_value)

    return _run_paddle_logical_and(x_value, y_value)


def _run_paddle_logical_and(x, y):
    x = cast_bool_if_necessary(x)
    y = cast_bool_if_necessary(y)
    return paddle.logical_and(x, y)


def _run_py_logical_and(x_func, y_func):
    x_value = x_func()
    assert not isinstance(x_value, Variable)

    # NOTE(liym27):
    #  1. Returns y_func() if x_value is False;
    #  2. If x_value is False, y_func() should not be run.
    return x_value and y_func()


def convert_logical_or(x_func, y_func):
    """
    A function representation of a Python ``or`` statement.

    Args:
        x_func(callable): x_func() is the left hand operand of ``or`` operator. x_func() is bool or Tensor.
        y_func(callable): y_func() is the right hand operand of ``or`` operator.  y_func() is bool or Tensor.

    Returns:
        A python bool variable or a bool Tensor.

    NOTE(liym27):
        1) The operands are executed sequentially according to the running logic of Python. So here the arguments
        should be callable.
        2) If the left hand operand is True, the right hand operand should be executed.

        For example:
            a = x > 1 or y < 1
        Transformed code:
            a = paddle.jit.dy2static.convert_logical_or(lambda:x>1, lambda:y<1)

        In `convert_logical_or(lambda:x>1, lambda:y<1)`, `lambda:y<1` must be run after `lambda:x>1`. And
        if `x>1` is True, `y<1` should NOT be run.
    """
    x_value = x_func()
    if not isinstance(x_value, Variable):
        return _run_py_logical_or(lambda: x_value, y_func)

    y_value = y_func()
    if not isinstance(y_value, Variable):
        return _run_py_logical_or(lambda: y_value, lambda: x_value)

    return _run_paddle_logical_or(x_value, y_value)


def _run_paddle_logical_or(x, y):
    x = cast_bool_if_necessary(x)
    y = cast_bool_if_necessary(y)
    return paddle.logical_or(x, y)


def _run_py_logical_or(x_func, y_func):
    x_value = x_func()
    assert not isinstance(x_value, Variable)

    # NOTE(liym27):
    #  1. Returns y_func() if x_value is False;
    #  2. If x_value is True, y_func() should not be run.
    return x_value or y_func()


def convert_logical_not(x):
    """
    A function representation of a Python ``not`` statement.

    Args:
        x(bool|Tensor): Operand of ``not`` operator.

    Returns:
        A python bool variable or a bool Tensor.
    """

    if isinstance(x, Variable):
        return _run_paddle_logical_not(x)
    else:
        return _run_py_logical_not(x)


def _run_paddle_logical_not(x):
    x = cast_bool_if_necessary(x)
    return paddle.logical_not(x)


def _run_py_logical_not(x):
    return not x


def convert_ifelse(
    pred,
    true_fn,
    false_fn,
    get_args,
    set_args,
    return_name_ids,
    push_pop_names=None,
):
    """
    A function representation of a Python ``if/else`` statement.

    Args:
        pred(bool|Tensor): A boolean Tensor which determines whether to return the result of ``true_fn`` or ``false_fn`` .
        true_fn(callable): A callable to be performed if ``pred`` is true.
        false_fn(callable): A callable to be performed if ``pred`` is false.
        get_args(callable): Get all arguments that needed in true_fn and false_fn.
        set_args(callable): Update arguments that modified in trure_fn and false_fn.
        return_name_ids(list[string], optional): the returned names.
        push_pop_names(list[string], optional): the names on which called .append() or .pop().

    Returns:
        ``true_fn()`` if the predicate ``pred`` is true else ``false_fn()`` .

    """
    if isinstance(pred, Variable):
        out = _run_paddle_cond(
            pred,
            true_fn,
            false_fn,
            get_args,
            set_args,
            return_name_ids,
            push_pop_names,
        )
    else:
        out = _run_py_ifelse(
            pred, true_fn, false_fn, get_args, set_args, return_name_ids
        )

    return out


def _run_paddle_cond(
    pred, true_fn, false_fn, get_args, set_args, return_name_ids, push_pop_names
):
    """
    Paddle cond API will evaluate both true_fn and false_fn codes.
    """
    helper = GetterSetterHelper(
        get_args, set_args, return_name_ids, push_pop_names
    )
    _convert_tensor_arrray_if_necessary(helper, push_pop_names)
    pred = cast_bool_if_necessary(pred)
    init_args = helper.get(return_name_ids)

    def new_true_fn():
        # init args may contain mutable python container like [var, 2], we copy then like in while_loop
        helper.set(return_name_ids, copy_mutable_vars(init_args))
        ret = true_fn()
        # IfExpr will return a non-None return value, so we just return ret.
        # We assume normal return has no return value.
        if ret is None:
            return helper.get(return_name_ids)
        else:
            return ret

    def new_false_fn():
        # init args may contain mutable python container like [var, 2], we copy then like in while_loop
        helper.set(return_name_ids, copy_mutable_vars(init_args))
        ret = false_fn()
        if ret is None:
            return helper.get(return_name_ids)
        else:
            return ret

    try:
        cond_outs = control_flow.cond(
            pred, new_true_fn, new_false_fn, None, return_name_ids
        )
    except Exception as e:
        if re.search(
            "Unsupported return type of true_fn and false_fn in cond", str(e)
        ):
            raise Dygraph2StaticException(
                "Your if/else have different return type. TODO: add link to modifty. {}".format(
                    str(e)
                )
            )
        if re.search("Incompatible return values of", str(e)):
            raise Dygraph2StaticException(
                "Your if/else have different number of return value. TODO: add link to modifty. {}".format(
                    str(e)
                )
            )
        raise e
    get_args = lambda: helper.get(return_name_ids)
    set_args = lambda vs: helper.set(return_name_ids, vs)
    return _recover_args_state(cond_outs, get_args, set_args, return_name_ids)


def _run_py_ifelse(
    pred, true_fn, false_fn, get_args, set_args, return_name_ids
):
    """
    Evaluate python original branch function if-else.
    """
    py_outs = true_fn() if pred else false_fn()
    return py_outs


def _remove_no_value_return_var(out):
    if isinstance(out, tuple) and len(out) > 0:
        processed_out = out
        align_ret = out[0]
        if isinstance(align_ret, tuple):
            for index, item in enumerate(align_ret):
                if isinstance(item, Variable) and (
                    RETURN_NO_VALUE_VAR_NAME in item.name
                ):
                    # return None
                    if index == 0:
                        processed_out = (None,) + out[1:]
                    elif index == 1:
                        processed_out = align_ret[:1] + out[1:]
                    else:
                        processed_out = (align_ret[:index],) + out[1:]
                    break

        for index, item in enumerate(processed_out):
            if isinstance(item, Variable) and (
                RETURN_NO_VALUE_VAR_NAME in item.name
            ):
                processed_out = processed_out[:index]

        if not processed_out:
            return None
        elif len(processed_out) == 1:
            return processed_out[0]
        else:
            return processed_out

    else:
        return out


def _check_no_undefined_var(outs, names, branch_name):
    if names is None:
        return
    if not isinstance(outs, (list, tuple)):
        outs = [outs]
    for var, name in zip(list(outs), names):
        if isinstance(var, UndefinedVar):
            raise ValueError(
                "Required '{}' must be initialized both in if-else branch, but found it not initialized in '{}'.".format(
                    name, branch_name
                )
            )


def _recover_args_state(outs, get_args, set_args, return_name_ids):
    """
    Currently we support variant length of early return statement by padding
    _no_return_value.

    # TODO(dev): We shall consider to evaluate whether should support this for Python if-else?
    """
    # IfExpr's return_name_ids maybe None
    if return_name_ids is None:
        return outs

    init_args = get_args()
    # recover args state
    num_outs = len(return_name_ids)
    num_args = len(init_args)
    assert num_outs <= num_args

    if num_args == 1:
        final_outs = (
            (outs,) if not isinstance(outs, (list, tuple)) else tuple(outs)
        )
    else:
        outs = (outs,) if num_outs == 1 else tuple(outs)
        final_outs = outs + init_args[num_outs:]

    set_args(final_outs)
    return final_outs


def convert_len(var):
    """
    Returns variable(length) from shape ops based on var.type

    Note: In addition to some ast transformations, some block-related
          operations are added in `len` transformation, such as appending
          `shape_op` in var.block.
    """
    if isinstance(var, Variable):
        assert var.ndim > 0, "len() of a 0D tensor is wrong"
        if var.type in [
            core.VarDesc.VarType.LOD_TENSOR,
            core.VarDesc.VarType.SELECTED_ROWS,
        ]:
            # Note: Length of var may be known ahead of time in dygraph,
            # but it probably represents batch size which can be variant.
            # so we return a variable dynamically inferred from var.shape.
            if var.shape[0] > 0 and var.type == core.VarDesc.VarType.LOD_TENSOR:
                return var.shape[0]
2
201716010711 已提交
526
            return paddle.shape(var)[0]
527
        elif var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
528
            return paddle.tensor.array_length(var)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        else:
            raise TypeError(
                'len(var) only supports LoDTensor/LoDTensorArray/SelectedRows, but received %s.'
                % type(var)
            )
    else:
        if isinstance(var, VariableTuple):
            return var.__len__()
        return len(var)


def convert_zip(*args):
    for i, arg in enumerate(args):
        if isinstance(arg, Variable) and arg.shape[0] == -1:
            raise RuntimeError(
                "Not support zip(tensor, ...) when tensor.shape[0] == -1, "
                "but found args[{}].shape[0] == -1 in 'zip'".format(str(i))
            )
    return zip(*args)


# TODO(xiongkun): delete when list<variable> is ready.
class VariableTuple:
    """
    this class will cause enumerate can't be wrapped by other iterator change function.
    this will be fixed when list<Variable> is producted.
    VariableTuple can only deal with variables which is fixed.
    """

    def __init__(self, var, start=0):
        self.var = var
        self.len = convert_len(var)
        if isinstance(self.len, Variable):
            self.rag = paddle.arange(start, start + self.len, 1, paddle.int64)
        else:
            self.rag = range(start, start + self.len)

    def __getitem__(self, idx):
        return self.rag[idx], self.var[idx]

    def __len__(self):
        return self.len


def convert_enumerate(*args):
    has_variable = any(map(lambda x: isinstance(x, Variable), args))
    if has_variable:
        return VariableTuple(*args)
    return enumerate(*args)


def convert_range(*args):
    has_variable = any(map(lambda x: isinstance(x, Variable), args))
    if has_variable:
        if len(args) == 1:
            return paddle.arange(0, args[0], 1, paddle.int64)
        if len(args) == 2:
            return paddle.arange(args[0], args[1], 1, paddle.int64)
        if len(args) == 3:
            return paddle.arange(args[0], args[1], args[2], paddle.int64)
    return range(*args)


def convert_shape(x):
    """
    A function representation of the shape of variable.
    """

    def has_negative(list_shape):
        return any([x < 0 for x in list_shape])

    # When `x` is Variable:
    #  (1) if x.shape contains -1, such as [2, -1, 64], returns [2, var, 64],
    #      where var = paddle.shape(x)[1]

    #  (2) if x.shape does not contains -1, return lsit(x.shape) directly

    if isinstance(x, Variable):
        values = list(x.shape)
        if has_negative(values):
2
201716010711 已提交
609
            shape_tensor = paddle.shape(x)
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
            for i, v in enumerate(values):
                if v is None or v < 0:
                    values[i] = shape_tensor[i]
        return values
    else:
        return x.shape


def convert_shape_compare(left, *args):
    """
    A function handles comparison difference between Paddle and Python.
    For example, if x and y are Tensors, x.shape == y.shape will return single
    boolean Value (True/False). However, paddle.shape(x) == paddle.shape(y) is
    an element-wise comparison. The difference can cause dy2stat error. So we
    create this function to handle the difference.

    Args:
        left: variable
        *args: compare_op(str), variable, compare_op(str), variable, where
            compare_op means "<", ">", "==", "!=", etc.
    Returns:
        If the variables to compare are NOT Paddle Variables, we will return as
        Python like "a op1 b and b op2 c and ... ".
        If the variables to compare are Paddle Variables, we will do elementwise
        comparsion first and then reduce to a boolean whose numel is 1.

    """
    args_len = len(args)
    assert (
        args_len >= 2
    ), "convert_shape_compare needs at least one right compare variable"
    assert (
        args_len % 2 == 0
    ), "Illegal input for convert_shape_compare, *args should be op(str), var, op(str), var ..."
    num_cmp = args_len // 2
    if isinstance(left, Variable):

        def reduce_compare(x, op_str, y):
            element_wise_result = eval("x " + op_str + " y")
            if op_str == "!=":
650
                return paddle.any(element_wise_result)
651 652 653 654 655 656 657 658
            elif (
                op_str == "is"
                or op_str == "is not"
                or op_str == "in"
                or op_str == "not in"
            ):
                return element_wise_result
            else:
659
                return paddle.all(element_wise_result)
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

        final_result = reduce_compare(left, args[0], args[1])
        for i in range(1, num_cmp):
            cmp_left = args[i * 2 - 1]
            cmp_op = args[i * 2]
            cmp_right = args[i * 2 + 1]
            cur_result = reduce_compare(cmp_left, cmp_op, cmp_right)
            final_result = convert_logical_and(
                lambda: final_result, lambda: cur_result
            )
        return final_result
    else:
        cmp_left = left
        final_result = None
        for i in range(num_cmp):
            cmp_op = args[i * 2]
            cmp_right = args[i * 2 + 1]
            cur_result = eval("cmp_left " + cmp_op + " cmp_right")
            if final_result is None:
                final_result = cur_result
            else:
                final_result = final_result and cur_result

            if final_result is False:
                return False
            cmp_left = cmp_right
        return final_result


def cast_bool_if_necessary(var):
    assert isinstance(var, Variable)
    if convert_dtype(var.dtype) not in ['bool']:
        var = cast(var, dtype="bool")
    return var


def convert_var_dtype(var, dtype):
    if isinstance(var, Variable):
        src_dtype = convert_dtype(var.dtype)
        assert src_dtype in [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'uint8',
        ], "The dtype of var {} is {}, which is not supported in the cast op.".format(
            var.name, src_dtype
        )
        assert dtype in [
            'bool',
            'int',
            'float',
        ], "The casted target dtype is {}, which is not supported in type casting.".format(
            dtype
        )
        cast_map = {
            'bool': 'bool',
            'int': 'int32',
            'float': 'float32',
        }
        return cast(var, dtype=cast_map[dtype])
    else:
        return eval('{}(var)'.format(dtype))


def convert_assert(cond, message=""):
    """
    A function representation of a Python ``assert`` statement.
    """
    if isinstance(cond, Variable):
        cond = cast(cond, "bool")
        # NOTE: message is not used because Paddle Assert has no corresponding parameter to use.
        return Assert(cond)
    else:
        assert cond, message


def convert_print(*args):
    """
    A function representing Python ``print`` statement. Note: this is a basic
    python function so we haven't handle sep, end, file and flush parameters of
    python function.
    """
    for var in args:
        if isinstance(var, Variable):
            var = Print(var)
        else:
            print(var)


def convert_pop(target, *args):
    """
    A function representation of a Python pop statement for a list or dict.

    Args:
        target(list|dict|Tensor): A variable to pop item from.
        *args(tuple): index or default value to parse.

    Returns:
        A item poped from target.
    """

    is_variable = isinstance(target, Variable)
    if is_variable:
        is_tensor_array = target.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY

    if is_variable and is_tensor_array:
        return _run_paddle_pop(target, *args)
    else:
        return _run_python_pop(target, *args)


def _run_paddle_pop(array, *args):
    if len(args) == 0:
        idx = -1
    else:
        idx = args[0]

    assert isinstance(idx, int)

    def cond(i, new_array):
L
LiYuRio 已提交
783
        return paddle.less_than(i, arr_len)
784 785 786

    def body(i, new_array):
        item = array_read(array=array, i=i)
787
        array_write(item, paddle.tensor.array_length(new_array), new_array)
788 789 790
        i = increment(i)
        return i, new_array

791
    arr_len = paddle.tensor.array_length(array)
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    if idx < 0:
        idx = idx + arr_len
    else:
        idx = fill_constant(shape=[1], dtype="int64", value=idx)

    pop_item = array_read(array, idx)

    new_array = _slice_tensor_array(array, 0, idx)
    i = idx + 1
    _, new_array = while_loop(cond, body, [i, new_array])
    assign(input=new_array, output=array)

    return pop_item


# TODO(liym27): A better way to slice tensor array.
#  Maybe support start == end for slice op.
def _slice_tensor_array(array, start, end):
    def true_fn():
811
        null_array = paddle.tensor.create_array("float32")
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
        return null_array

    def false_fn(array, start, end):
        new_array = paddle.slice(array, starts=[start], ends=[end], axes=[0])
        return new_array

    new_array = cond(start == end, true_fn, lambda: false_fn(array, start, end))
    return new_array


def _run_python_pop(target, *args):
    # 1. pop for a dict
    if len(args) == 2:
        idx, default = args
        return target.pop(idx, default)
827

828 829 830 831
    # 2. pop for a list or dict
    else:
        idx = args[0] if args else -1
        return target.pop(idx)