elementwise_kernel.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/backends/cpu/cpu_context.h"
Y
YuanRisheng 已提交
16 17
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
18
#include "paddle/phi/core/kernel_registry.h"
19
#include "paddle/phi/kernels/cpu/elementwise.h"
20 21
#include "paddle/phi/kernels/impl/elementwise_kernel_impl.h"

Y
YuanRisheng 已提交
22 23
namespace phi {

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
template <typename T, typename Context>
void MaximumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  funcs::ElementwiseCompute<funcs::MaximumFunctor<T>, T>(
      dev_ctx, x, y, axis, funcs::MaximumFunctor<T>(), out);
}

template <typename T, typename Context>
void MinimumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  funcs::ElementwiseCompute<funcs::MinimumFunctor<T>, T>(
      dev_ctx, x, y, axis, funcs::MinimumFunctor<T>(), out);
}

template <typename T, typename Context>
C
Chen Weihang 已提交
49 50 51 52 53
void RemainderRawKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        int axis,
                        DenseTensor* out) {
54 55 56 57 58
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  if (x_dims.size() >= y_dims.size()) {
C
Chen Weihang 已提交
59 60
    funcs::ElementwiseCompute<funcs::RemainderFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::RemainderFunctor<T>(), out);
61
  } else {
C
Chen Weihang 已提交
62 63
    funcs::ElementwiseCompute<funcs::InverseRemainderFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::InverseRemainderFunctor<T>(), out);
64 65 66
  }
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
template <typename T, typename Context>
void FloorDivideRawKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          int axis,
                          DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  if (x_dims.size() >= y_dims.size()) {
    funcs::ElementwiseCompute<funcs::FloorDivideFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::FloorDivideFunctor<T>(), out);
  } else {
    funcs::ElementwiseCompute<funcs::InverseFloorDivideFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::InverseFloorDivideFunctor<T>(), out);
  }
}

template <typename T, typename Context>
void ElementwisePowRawKernel(const Context& dev_ctx,
                             const DenseTensor& x,
                             const DenseTensor& y,
                             int axis,
                             DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
94 95 96 97 98 99 100 101 102
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  if (x_dims.size() >= y_dims.size()) {
    funcs::ElementwiseCompute<funcs::ElementwisePowFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::ElementwisePowFunctor<T>(), out);
  } else {
    funcs::ElementwiseCompute<funcs::ElementwiseInversePowFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::ElementwiseInversePowFunctor<T>(), out);
  }
103
}
Y
YuanRisheng 已提交
104

105 106 107 108 109 110 111 112 113 114 115 116
template <typename T, typename Context>
void ElementwiseHeavisideRawKernel(const Context& dev_ctx,
                                   const DenseTensor& x,
                                   const DenseTensor& y,
                                   int axis,
                                   DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  funcs::ElementwiseCompute<funcs::ElementwiseHeavisideFunctor<T>, T>(
      dev_ctx, x, y, axis, funcs::ElementwiseHeavisideFunctor<T>(), out);
}

Y
YuanRisheng 已提交
117 118 119 120 121 122 123 124
}  // namespace phi

using complex64 = ::phi::dtype::complex<float>;
using complex128 = ::phi::dtype::complex<double>;

// NOTE(chenweihang): using bfloat16 will cause redefine with xpu bfloat16
// using bfloat16 = ::phi::dtype::bfloat16;

125 126 127 128 129 130 131 132
PD_REGISTER_KERNEL(fmax_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::FMaxRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
133

134 135 136 137 138 139 140 141
PD_REGISTER_KERNEL(fmin_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::FMinRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
Y
YuanRisheng 已提交
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
PD_REGISTER_KERNEL(maximum_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::MaximumRawKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(minimum_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::MinimumRawKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}
C
Chen Weihang 已提交
161
PD_REGISTER_KERNEL(remainder_raw,
162 163
                   CPU,
                   ALL_LAYOUT,
C
Chen Weihang 已提交
164
                   phi::RemainderRawKernel,
165 166 167 168
                   float,
                   double,
                   int,
                   int64_t) {}
169 170 171 172 173 174 175 176 177 178 179 180 181 182
PD_REGISTER_KERNEL(floor_divide_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::FloorDivideRawKernel,
                   int,
                   int64_t) {}
PD_REGISTER_KERNEL(elementwise_pow_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwisePowRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
183 184 185 186 187 188 189 190
PD_REGISTER_KERNEL(elementwise_heaviside_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwiseHeavisideRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}