conv_grad_kernel.cu 51.4 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/conv_grad_kernel.h"

H
hong 已提交
17
#include "paddle/phi/backends/gpu/gpu_context.h"
18
#include "paddle/phi/core/dense_tensor.h"
H
hong 已提交
19 20
#include "paddle/phi/core/kernel_registry.h"
#ifdef PADDLE_WITH_HIP
21
#include "paddle/phi/kernels/gpudnn/conv_miopen_helper.h"
H
hong 已提交
22
#else
23
#include "paddle/phi/kernels/gpudnn/conv_cudnn_v7.h"
H
hong 已提交
24 25 26 27
#endif

#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/profiler.h"
28 29
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
H
hong 已提交
30 31
#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"
32
#include "paddle/phi/kernels/funcs/padding.h"
H
hong 已提交
33 34 35 36 37 38 39 40
#include "paddle/phi/kernels/impl/conv_cudnn_impl.h"

namespace phi {

template <typename T, typename Context>
void ConvCudnnGradKernel(const Context& ctx,
                         const DenseTensor& input,
                         const DenseTensor& filter,
H
hong 已提交
41
                         const DenseTensor& output_grad,
H
hong 已提交
42 43 44 45
                         const std::vector<int>& strides_t,
                         const std::vector<int>& paddings_t,
                         const std::string& padding_algorithm,
                         const std::vector<int>& dilations_t,
46
                         int groups,
H
hong 已提交
47 48 49 50
                         const std::string& data_format,
                         DenseTensor* input_grad,
                         DenseTensor* filter_grad) {
  if (input_grad) {
H
hong 已提交
51
    ctx.template Alloc<T>(input_grad);
H
hong 已提交
52 53
  }
  if (filter_grad) {
H
hong 已提交
54
    ctx.template Alloc<T>(filter_grad);
H
hong 已提交
55 56
  }

57 58 59 60 61 62
  bool has_use_addto = ctx.HasDnnAttr("use_addto");
  VLOG(4) << "GPUContext contains `use_addto`: " << has_use_addto;
  bool use_addto = has_use_addto
                       ? PADDLE_GET_CONST(bool, ctx.GetDnnAttr("use_addto"))
                       : false;

H
hong 已提交
63 64 65 66
  std::vector<int> dilations = dilations_t;
  std::vector<int> strides = strides_t;
  std::vector<int> paddings = paddings_t;

67 68 69 70 71 72 73 74 75
  bool has_exhaustive_search = ctx.HasDnnAttr("exhaustive_search");
  VLOG(4) << "GPUContext contains `exhaustive_search`: "
          << has_exhaustive_search;
  bool exhaustive_search_attr =
      has_exhaustive_search
          ? PADDLE_GET_CONST(bool, ctx.GetDnnAttr("exhaustive_search"))
          : false;
  bool exhaustive_search =
      FLAGS_cudnn_exhaustive_search || exhaustive_search_attr;
H
hong 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
  bool deterministic = FLAGS_cudnn_deterministic;
  auto exhaustive_deterministic = exhaustive_search && deterministic;
  PADDLE_ENFORCE_EQ(exhaustive_deterministic,
                    false,
                    phi::errors::InvalidArgument(
                        "Cann't set exhaustive_search True and "
                        "FLAGS_cudnn_deterministic True at same time."));

  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

  auto dtype = paddle::platform::CudnnDataType<T>::type;

#ifdef PADDLE_WITH_HIP
  // HIP MIOPEN ONLY SUPPORT NCHW format
  auto compute_format = paddle::platform::DataLayout::kNCHW;
#else
  const bool compute_in_nhwc = dtype == CUDNN_DATA_HALF && IsVoltaOrLater(ctx);
  auto compute_format = compute_in_nhwc && channel_last
                            ? paddle::platform::DataLayout::kNHWC
                            : paddle::platform::DataLayout::kNCHW;
#endif
  VLOG(3) << "Compute ConvGradOp with cuDNN:"
          << " data_format=" << data_format << " compute_format="
          << (compute_format == paddle::platform::DataLayout::kNHWC ? "NHWC"
                                                                    : "NCHW");

  // transform Tensor
  DenseTensor transformed_input_channel(input.type());
  DenseTensor transformed_output_grad_channel(output_grad.type());
  DenseTensor transformed_input_grad_channel(input.type());
  DenseTensor transformed_filter_channel(filter.type());
  DenseTensor transformed_filter_grad_channel(filter.type());

  if (channel_last && compute_format == paddle::platform::DataLayout::kNCHW) {
    VLOG(3) << "Transform input, output_grad, input_grad and tensor from "
               "NHWC to NCHW.";
    ResizeToChannelFirst<Context, T>(ctx, &input, &transformed_input_channel);
    TransToChannelFirst<Context, T>(ctx, &input, &transformed_input_channel);

    ResizeToChannelFirst<Context, T>(
        ctx, &output_grad, &transformed_output_grad_channel);
    TransToChannelFirst<Context, T>(
        ctx, &output_grad, &transformed_output_grad_channel);

    if (input_grad) {
      ResizeToChannelFirst<Context, T>(
          ctx, input_grad, &transformed_input_grad_channel);
      // NOTE(zhiqiu): If inplace_addto strategy is enabled, we need to copy
      // the data of input_grad to transformed_input_grad_channel.
      if (use_addto) {
        TransToChannelFirst<Context, T>(
            ctx, input_grad, &transformed_input_grad_channel);
      }
    }
  } else {
    transformed_input_channel.ShareDataWith(input);
    transformed_output_grad_channel.ShareDataWith(output_grad);
    if (input_grad) {
      transformed_input_grad_channel.ShareDataWith(*input_grad);
    }
  }

  if (compute_format == paddle::platform::DataLayout::kNHWC) {
    VLOG(3) << "Transform filter and filter_grad tensor from NCHW to NHWC.";
    ResizeToChannelLast<Context, T>(ctx, &filter, &transformed_filter_channel);
    TransToChannelLast<Context, T>(ctx, &filter, &transformed_filter_channel);

    if (filter_grad) {
      ResizeToChannelLast<Context, T>(
          ctx, filter_grad, &transformed_filter_grad_channel);
    }
  } else {
    transformed_filter_channel.ShareDataWith(filter);
    if (filter_grad) {
      transformed_filter_grad_channel.ShareDataWith(*filter_grad);
    }
  }

  //  update paddings
  auto in_dims = transformed_input_channel.dims();
  auto filter_dims = transformed_filter_channel.dims();
  DDim in_data_dims;
  DDim filter_data_dims;
  if (compute_format == paddle::platform::DataLayout::kNCHW) {
    in_data_dims = slice_ddim(in_dims, 2, in_dims.size());
    filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  } else {
    in_data_dims = slice_ddim(in_dims, 1, in_dims.size() - 1);
    filter_data_dims = slice_ddim(filter_dims, 1, filter_dims.size() - 1);
  }
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  // cuDNN only supports padding the same amount on every dimension.
  // So we create a new padded input tensor.
  int data_dim = strides.size();  // 2d or 3d
  bool is_sys_pad = funcs::IsSymmetricPadding(paddings, data_dim);
  Tensor transformed_input(input.type());
  Tensor transformed_input_grad(input.type());
  std::vector<int> padding_common(data_dim, 0);
  std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);

  if (!is_sys_pad) {
    // get pad
    std::vector<int> padding_diff(data_dim);
    std::vector<int> new_input_shape_vec(data_dim + 2);
    new_input_shape_vec[0] = transformed_input_channel.dims()[0];
    if (compute_format == paddle::platform::DataLayout::kNCHW) {
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];
    } else {
      new_input_shape_vec[data_dim + 1] =
          transformed_input_channel.dims()[data_dim + 1];
    }

    for (size_t i = 0; i < data_dim; ++i) {
      padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
      padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
      if (compute_format == paddle::platform::DataLayout::kNCHW) {
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
      } else {
        new_input_shape_vec[i + 1] =
            transformed_input_channel.dims()[i + 1] + padding_diff[i];
      }
      if (compute_format == paddle::platform::DataLayout::kNCHW) {
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      } else {
        input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
    }
    DDim new_input_shape(make_ddim(new_input_shape_vec));
    transformed_input.Resize(new_input_shape);
H
hong 已提交
211
    ctx.template Alloc<T>(&transformed_input);
H
hong 已提交
212 213 214 215

    transformed_input_grad.Resize(new_input_shape);

    if (input_grad) {
H
hong 已提交
216
      ctx.template Alloc<T>(&transformed_input_grad);
H
hong 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    }
    // pad for input
    const int rank = transformed_input_channel.dims().size();
    T pad_value(0.0);
    switch (rank) {
      case 4: {
        funcs::PadFunction<Context, T, 4>(ctx,
                                          input_pad,
                                          transformed_input_channel,
                                          pad_value,
                                          &transformed_input);
      } break;
      case 5: {
        funcs::PadFunction<Context, T, 5>(ctx,
                                          input_pad,
                                          transformed_input_channel,
                                          pad_value,
                                          &transformed_input);
      } break;
      default:
        PADDLE_THROW(phi::errors::InvalidArgument(
            "ConvOp only support tensors with 4 or 5 dimensions."));
    }
  } else {
    transformed_input.ShareDataWith(transformed_input_channel);
    if (input_grad) {
      transformed_input_grad.ShareDataWith(transformed_input_grad_channel);
    }
    if (paddings.size() == data_dim) {
      for (size_t i = 0; i < data_dim; ++i) {
        padding_common[i] = paddings[i];
      }
    } else {
      for (size_t i = 0; i < data_dim; ++i) {
        padding_common[i] = paddings[2 * i];
      }
    }
  }

  const T* input_data = transformed_input.data<T>();
  const T* output_grad_data = transformed_output_grad_channel.data<T>();
  const T* filter_data = transformed_filter_channel.data<T>();
  T* filter_grad_data = nullptr;
  T* input_grad_data = nullptr;
  T* transformed_input_grad_data = nullptr;

263
  auto handle = ctx.cudnn_handle();
H
hong 已提交
264 265 266 267 268
  paddle::platform::DataLayout layout =
      compute_format == paddle::platform::DataLayout::kNHWC
          ? paddle::platform::DataLayout::kNHWC
          : paddle::platform::DataLayout::kNCHW;

269 270
  ConvArgs args1{handle,
                 &transformed_input_grad,
271 272 273 274 275 276 277 278
                 &transformed_filter_channel,
                 &transformed_output_grad_channel,
                 strides,
                 padding_common,
                 dilations,
                 dtype,
                 groups,
                 layout};
279 280
  ConvArgs args2{handle,
                 &transformed_input,
281 282 283 284 285 286 287 288
                 &transformed_filter_grad_channel,
                 &transformed_output_grad_channel,
                 strides,
                 padding_common,
                 dilations,
                 dtype,
                 groups,
                 layout};
H
hong 已提交
289 290

  // TODO(phlrain): replace paddle::platform::DataLaytout to phi::DataLayout
H
hong 已提交
291

H
hong 已提交
292 293 294 295 296 297 298 299 300 301 302
  if (transformed_input.dims().size() == 5) {
    layout = compute_format == paddle::platform::DataLayout::kNHWC
                 ? paddle::platform::DataLayout::kNDHWC
                 : paddle::platform::DataLayout::kNCDHW;
  }
  auto layout_tensor = paddle::platform::GetCudnnTensorFormat(layout);
  auto workspace_handle = ctx.cudnn_workspace_handle();

  int i_n, i_c, i_d, i_h, i_w;
  int o_n, o_c, o_d, o_h, o_w;
  if (compute_format == paddle::platform::DataLayout::kNHWC) {
303 304 305 306 307 308 309 310 311 312 313 314 315 316
    GetNCDHW(transformed_input.dims(),
             paddle::platform::DataLayout::kNHWC,
             &i_n,
             &i_c,
             &i_d,
             &i_h,
             &i_w);
    GetNCDHW(transformed_output_grad_channel.dims(),
             paddle::platform::DataLayout::kNHWC,
             &o_n,
             &o_c,
             &o_d,
             &o_h,
             &o_w);
H
hong 已提交
317
  } else {
318 319 320 321 322 323 324 325 326 327 328 329 330 331
    GetNCDHW(transformed_input.dims(),
             paddle::platform::DataLayout::kNCHW,
             &i_n,
             &i_c,
             &i_d,
             &i_h,
             &i_w);
    GetNCDHW(transformed_output_grad_channel.dims(),
             paddle::platform::DataLayout::kNCHW,
             &o_n,
             &o_c,
             &o_d,
             &o_h,
             &o_w);
H
hong 已提交
332 333 334 335 336
  }

  int group_offset_in = i_c / groups * i_h * i_w * i_d;
  int group_offset_out = o_c / groups * o_h * o_w * o_d;
  int group_offset_filter = transformed_filter_channel.numel() / groups;
337

H
hong 已提交
338 339
// ------------------- cudnn backward algorithm ---------------------
#ifdef PADDLE_WITH_HIP
340 341
  SearchResult<miopenConvBwdDataAlgorithm_t> bwd_result;
  SearchResult<miopenConvBwdWeightsAlgorithm_t> filter_result;
H
hong 已提交
342
#else
343 344
  SearchResult<cudnnConvolutionBwdDataAlgo_t> bwd_result;
  SearchResult<cudnnConvolutionBwdFilterAlgo_t> filter_result;
H
hong 已提交
345
#endif
346
  size_t workspace_size = 0;
H
hong 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
  int iwo_groups = groups;
  int c_groups = 1;

#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
  iwo_groups = 1;
  c_groups = groups;
  groups = 1;
#endif

  if (input_grad) {
    // ------------------- cudnn descriptors ---------------------
    input_grad_data = input_grad->data<T>();
    transformed_input_grad_data = transformed_input_grad.data<T>();

    args1.idesc.set(transformed_input_grad, layout_tensor);
    args1.wdesc.set(transformed_filter_channel, layout_tensor, iwo_groups);
    args1.odesc.set(transformed_output_grad_channel, layout_tensor);
    args1.cdesc.set(dtype,
                    padding_common,
                    strides,
                    dilations,
                    paddle::platform::AllowTF32Cudnn(),
                    c_groups);

#ifdef PADDLE_WITH_HIP
372
    using search1 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
373
    workspace_size = std::max(workspace_size, search1::GetWorkspaceSize(args1));
374
    bwd_result.algo = search1::Find<T>(
375
        args1, exhaustive_search, deterministic, workspace_size, ctx);
H
hong 已提交
376
#else
377
    using search1 = SearchAlgorithm<ConvKind::kBackwardData>;
378
    bwd_result = search1::Find<T>(ctx, args1, exhaustive_search, deterministic);
379
    workspace_size = std::max(workspace_size, bwd_result.workspace_size);
H
hong 已提交
380 381 382 383 384 385
#endif
  }

  if (filter_grad) {
    // ------------------- cudnn descriptors ---------------------
    filter_grad_data = transformed_filter_grad_channel.data<T>();
386

H
hong 已提交
387 388 389 390 391 392 393 394 395 396
    args2.idesc.set(transformed_input, layout_tensor);
    args2.wdesc.set(transformed_filter_grad_channel, layout_tensor, iwo_groups);
    args2.odesc.set(transformed_output_grad_channel, layout_tensor);
    args2.cdesc.set(dtype,
                    padding_common,
                    strides,
                    dilations,
                    paddle::platform::AllowTF32Cudnn(),
                    c_groups);
#ifdef PADDLE_WITH_HIP
397
    using search2 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
398
    workspace_size = std::max(workspace_size, search2::GetWorkspaceSize(args2));
399
    filter_result.algo = search2::Find<T>(
400
        args2, exhaustive_search, deterministic, workspace_size, ctx);
H
hong 已提交
401
#else
402
    using search2 = SearchAlgorithm<ConvKind::kBackwardFilter>;
403
    filter_result =
404
        search2::Find<T>(ctx, args2, exhaustive_search, deterministic);
405 406
    VLOG(3) << "filter algo: " << filter_result.algo << ", time "
            << filter_result.time;
407
    workspace_size = std::max(workspace_size, filter_result.workspace_size);
H
hong 已提交
408 409 410 411
#endif
  }

  // ------------------- cudnn conv backward data ---------------------
412
  ScalingParamType<T> alpha = 1.0f;
H
hong 已提交
413 414
#ifdef PADDLE_WITH_HIP
  // MIOPEN ONLY support beta to be 0.0f
415
  ScalingParamType<T> beta = 0.0f;
H
hong 已提交
416
#else
417
  ScalingParamType<T> beta = use_addto ? 1.0f : 0.0f;
H
hong 已提交
418 419 420 421 422 423 424 425 426 427 428

#endif
  VLOG(4) << "Conv_grad: use_addto = " << use_addto;

  if (input_grad) {
// When beta is 0, it is unnecessary to reset input_grad.
// When beta is 1, the output cannot be reset since addt strategy used.
#ifdef PADDLE_WITH_HIP
    if (use_addto) {
      DenseTensor temp_tensor(transformed_input_grad.type());
      temp_tensor.Resize(transformed_input_grad.dims());
H
hong 已提交
429
      T* temp_tensor_data = ctx.template Alloc<T>(&temp_tensor);
H
hong 已提交
430 431 432 433 434 435 436 437 438 439 440
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::miopenConvolutionBackwardData(
                    handle,
                    &alpha,
                    args1.odesc.desc(),
                    output_grad_data,
                    args1.wdesc.desc(),
                    filter_data,
                    args1.cdesc.desc(),
441
                    bwd_result.algo,
H
hong 已提交
442 443 444 445
                    &beta,
                    args1.idesc.desc(),
                    temp_tensor_data,
                    cudnn_workspace_ptr,
446
                    workspace_size));
H
hong 已提交
447
          },
448
          workspace_size);
H
hong 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
      PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::miopenOpTensor(
          handle,
          miopenTensorOpAdd,
          &alpha,
          args1.idesc.desc(),
          transformed_input_grad_data,
          &alpha,
          args1.idesc.desc(),
          temp_tensor_data,
          &beta,
          args1.idesc.desc(),
          transformed_input_grad_data));
    } else {
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::miopenConvolutionBackwardData(
                    handle,
                    &alpha,
                    args1.odesc.desc(),
                    output_grad_data,
                    args1.wdesc.desc(),
                    filter_data,
                    args1.cdesc.desc(),
473
                    bwd_result.algo,
H
hong 已提交
474 475 476 477
                    &beta,
                    args1.idesc.desc(),
                    transformed_input_grad_data,
                    cudnn_workspace_ptr,
478
                    workspace_size));
H
hong 已提交
479
          },
480
          workspace_size);
H
hong 已提交
481 482
    }
#else
483 484 485 486 487 488 489 490 491 492 493 494 495
    ConvRunner<T, ConvKind::kBackwardData>::Apply(ctx,
                                                  args1,
                                                  bwd_result,
                                                  output_grad_data,
                                                  filter_data,
                                                  transformed_input_grad_data,
                                                  groups,
                                                  group_offset_in,
                                                  group_offset_filter,
                                                  group_offset_out,
                                                  workspace_size,
                                                  &workspace_handle,
                                                  use_addto);
H
hong 已提交
496
#endif
497

H
hong 已提交
498 499 500 501 502 503 504 505 506
    if (!is_sys_pad) {
      std::vector<int> starts(transformed_input_channel.dims().size(), 0);
      std::vector<int> axes(transformed_input_channel.dims().size(), 0);

      for (size_t i = 0; i < transformed_input_channel.dims().size(); ++i) {
        starts[i] = input_pad[2 * i];
        axes[i] = i;
      }

H
hong 已提交
507
      ctx.template Alloc<T>(&transformed_input_grad_channel);
H
hong 已提交
508
      if (transformed_input_channel.dims().size() == 4) {
509 510 511 512 513
        RemovePaddingSlice<Context, T, 4>(ctx,
                                          &transformed_input_grad,
                                          &transformed_input_grad_channel,
                                          starts,
                                          axes);
H
hong 已提交
514
      } else {
515 516 517 518 519
        RemovePaddingSlice<Context, T, 5>(ctx,
                                          &transformed_input_grad,
                                          &transformed_input_grad_channel,
                                          starts,
                                          axes);
H
hong 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
      }
    }

    if (channel_last && compute_format == paddle::platform::DataLayout::kNCHW) {
      TransToChannelLast<Context, T>(
          ctx, &transformed_input_grad_channel, input_grad);
    }
  }

  // ------------------- cudnn conv backward filter ---------------------
  if (filter_grad) {
// Because beta is zero, it is unnecessary to reset filter_grad.
#ifdef PADDLE_WITH_HIP
    workspace_handle.RunFunc(
        [&](void* cudnn_workspace_ptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              paddle::platform::dynload::miopenConvolutionBackwardWeights(
                  handle,
                  &alpha,
                  args2.odesc.desc(),
                  output_grad_data,
                  args2.idesc.desc(),
                  input_data,
                  args2.cdesc.desc(),
544
                  filter_result.algo,
H
hong 已提交
545 546 547 548
                  &beta,
                  args2.wdesc.desc(),
                  filter_grad_data,
                  cudnn_workspace_ptr,
549
                  workspace_size));
H
hong 已提交
550
        },
551
        workspace_size);
H
hong 已提交
552
#else
553 554 555 556 557 558 559 560 561 562 563 564 565
    ConvRunner<T, ConvKind::kBackwardFilter>::Apply(ctx,
                                                    args2,
                                                    filter_result,
                                                    output_grad_data,
                                                    input_data,
                                                    filter_grad_data,
                                                    groups,
                                                    group_offset_in,
                                                    group_offset_filter,
                                                    group_offset_out,
                                                    workspace_size,
                                                    &workspace_handle,
                                                    false);
H
hong 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578
#endif

    if (compute_format == paddle::platform::DataLayout::kNHWC) {
      TransToChannelFirst<Context, T>(
          ctx, &transformed_filter_grad_channel, filter_grad);
    }
  }
}

template <typename T, typename Context>
void Conv3DCudnnGradKernel(const Context& dev_ctx,
                           const DenseTensor& input,
                           const DenseTensor& filter,
H
hong 已提交
579
                           const DenseTensor& out_grad,
H
hong 已提交
580 581
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
582
                           const std::string& padding_algorithm,
H
hong 已提交
583 584 585 586 587 588 589 590
                           int groups,
                           const std::vector<int>& dilations,
                           const std::string& data_format,
                           DenseTensor* input_grad,
                           DenseTensor* filter_grad) {
  ConvCudnnGradKernel<T>(dev_ctx,
                         input,
                         filter,
H
hong 已提交
591
                         out_grad,
H
hong 已提交
592 593
                         strides,
                         paddings,
594
                         padding_algorithm,
H
hong 已提交
595
                         dilations,
596
                         groups,
H
hong 已提交
597 598 599 600 601
                         data_format,
                         input_grad,
                         filter_grad);
}

H
hong 已提交
602 603 604 605 606 607 608
template <typename T, typename Context>
void DepthwiseConvCudnnGradKernel(const Context& dev_ctx,
                                  const DenseTensor& input,
                                  const DenseTensor& filter,
                                  const DenseTensor& out_grad,
                                  const std::vector<int>& strides,
                                  const std::vector<int>& paddings,
609
                                  const std::string& padding_algorithm,
H
hong 已提交
610 611 612 613 614 615
                                  int groups,
                                  const std::vector<int>& dilations,
                                  const std::string& data_format,
                                  bool use_addto,
                                  int workspace_size_MB,
                                  bool exhaustive_search,
H
hong 已提交
616
                                  bool fuse_relu,
H
hong 已提交
617 618 619 620 621 622 623 624
                                  DenseTensor* input_grad,
                                  DenseTensor* filter_grad) {
  ConvCudnnGradKernel<T>(dev_ctx,
                         input,
                         filter,
                         out_grad,
                         strides,
                         paddings,
625
                         padding_algorithm,
H
hong 已提交
626
                         dilations,
627
                         groups,
H
hong 已提交
628 629 630 631 632
                         data_format,
                         input_grad,
                         filter_grad);
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
template <typename T, typename Context>
void ConvCudnnGradGradKernel(
    const Context& ctx,
    const DenseTensor& input,
    const DenseTensor& filter,
    const DenseTensor& out_grad,
    const paddle::optional<DenseTensor>& input_grad_grad,
    const paddle::optional<DenseTensor>& filter_grad_grad,
    const std::vector<int>& strides,
    const std::vector<int>& paddings_t,
    const std::string& padding_algorithm,
    const std::vector<int>& dilations_t,
    int groups,
    const std::string& data_format,
    DenseTensor* input_grad,
    DenseTensor* filter_grad,
    DenseTensor* out_grad_grad) {
  auto X = &input;
  auto W = &filter;
  auto dO = &out_grad;
  auto ddX = input_grad_grad.get_ptr();
  auto ddW = filter_grad_grad.get_ptr();

  auto ddO = out_grad_grad;
  auto dW = filter_grad;
  auto dX = input_grad;
  if (ddO) {
    ctx.template Alloc<T>(ddO);
    phi::funcs::SetConstant<Context, T> set_zero;
    set_zero(ctx, ddO, static_cast<T>(0));
  }
  if (dW) {
    ctx.template Alloc<T>(dW);
  }
  if (dX) {
    ctx.template Alloc<T>(dX);
  }

  // const T* x = X->data<T>();
  const T* dy = dO->data<T>();
  const T* w = W->data<T>();

  const T* ddx = nullptr;
  const T* ddw = nullptr;
  T *dw, *dx, *ddy;
  dw = dx = ddy = nullptr;
  T* transformed_dx = nullptr;
  std::vector<int> dilations = dilations_t;

  bool has_exhaustive_search = ctx.HasDnnAttr("exhaustive_search");
  VLOG(4) << "GPUContext contains `exhaustive_search`: "
          << has_exhaustive_search;
  bool exhaustive_search_attr =
      has_exhaustive_search
          ? PADDLE_GET_CONST(bool, ctx.GetDnnAttr("exhaustive_search"))
          : false;
  bool exhaustive_search =
      FLAGS_cudnn_exhaustive_search || exhaustive_search_attr;
  bool deterministic = FLAGS_cudnn_deterministic;
  auto exhaustive_deterministic = exhaustive_search && deterministic;
  PADDLE_ENFORCE_EQ(exhaustive_deterministic,
                    false,
                    phi::errors::InvalidArgument(
                        "Cann't set exhaustive_search True and "
                        "FLAGS_cudnn_deterministic True at same time."));

  std::vector<int> paddings = paddings_t;

  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

  // transform Tensors to channel first-----------
  DenseTensor transformed_X_channel(X->type());
  DenseTensor transformed_dO_channel(dO->type());
  DenseTensor transformed_ddX_channel(X->type());

  DenseTensor transformed_ddO_channel(dO->type());
  DenseTensor transformed_dX_channel(X->type());

  if (channel_last) {
    ResizeToChannelFirst<Context, T>(ctx, X, &transformed_X_channel);
    TransToChannelFirst<Context, T>(ctx, X, &transformed_X_channel);

    ResizeToChannelFirst<Context, T>(ctx, dO, &transformed_dO_channel);
    TransToChannelFirst<Context, T>(ctx, dO, &transformed_dO_channel);

    if (ddX) {
      ResizeToChannelFirst<Context, T>(ctx, ddX, &transformed_ddX_channel);
      TransToChannelFirst<Context, T>(ctx, ddX, &transformed_ddX_channel);
    }

    if (ddO) {
      ResizeToChannelFirst<Context, T>(ctx, ddO, &transformed_ddO_channel);
    }
    if (dX) {
      ResizeToChannelFirst<Context, T>(ctx, dX, &transformed_dX_channel);
      ctx.template Alloc<T>(&transformed_dX_channel);
    }

  } else {
    transformed_X_channel = *X;
    transformed_dO_channel = *dO;
    if (ddX) {
      transformed_ddX_channel = *ddX;
    }
    if (ddO) {
      transformed_ddO_channel.ShareDataWith(*ddO);
    }
    if (dX) {
      transformed_dX_channel.ShareDataWith(*dX);
    }
  }

  auto in_dims = transformed_X_channel.dims();
  auto filter_dims = W->dims();
  DDim in_data_dims = slice_ddim(in_dims, 2, in_dims.size());
  DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  int data_dim = strides.size();  // 2d or 3d
  bool is_sys_pad = funcs::IsSymmetricPadding(paddings, data_dim);
  DenseTensor transformed_X(X->type());
  DenseTensor transformed_ddX(X->type());

  DenseTensor transformed_dX(X->type());

  std::vector<int> padding_common(data_dim, 0);
  std::vector<int> input_pad(X->dims().size() * 2, 0);

  if (!is_sys_pad) {
    // get pad
    std::vector<int> padding_diff(data_dim);
    std::vector<int> new_input_shape_vec(data_dim + 2);
    new_input_shape_vec[0] = transformed_X_channel.dims()[0];
    new_input_shape_vec[1] = transformed_X_channel.dims()[1];

    for (size_t i = 0; i < data_dim; ++i) {
      padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
      padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
      new_input_shape_vec[i + 2] =
          transformed_X_channel.dims()[i + 2] + padding_diff[i];
      input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
      input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
    }
    DDim new_input_shape(make_ddim(new_input_shape_vec));
    transformed_X.Resize(new_input_shape);
    transformed_ddX.Resize(new_input_shape);
    transformed_dX.Resize(new_input_shape);

    ctx.template Alloc<T>(&transformed_X);

    if (ddX) {
      ctx.template Alloc<T>(&transformed_ddX);
    }
    if (dX) {
      ctx.template Alloc<T>(&transformed_dX);
    }

    // pad for input
    const int rank = X->dims().size();
    T pad_value(0.0);
    switch (rank) {
      case 4: {
        funcs::PadFunction<Context, T, 4>(
            ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
        if (ddX) {
          funcs::PadFunction<Context, T, 4>(ctx,
                                            input_pad,
                                            transformed_ddX_channel,
                                            pad_value,
                                            &transformed_ddX);
        }
      } break;
      case 5: {
        funcs::PadFunction<Context, T, 5>(
            ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
        if (ddX) {
          funcs::PadFunction<Context, T, 5>(ctx,
                                            input_pad,
                                            transformed_ddX_channel,
                                            pad_value,
                                            &transformed_ddX);
        }
      } break;
      default:
        PADDLE_THROW(phi::errors::InvalidArgument(
            "ConvOp only support tensors with 4 or 5 dimensions."));
    }

  } else {
    transformed_X.ShareDataWith(transformed_X_channel);
    if (ddX) {
      transformed_ddX.ShareDataWith(transformed_ddX_channel);
    }
    if (dX) {
      transformed_dX.ShareDataWith(transformed_dX_channel);
    }

    if (paddings.size() == data_dim) {
      for (size_t i = 0; i < data_dim; ++i) {
        padding_common[i] = paddings[i];
      }
    } else {
      for (size_t i = 0; i < data_dim; ++i) {
        padding_common[i] = paddings[2 * i];
      }
    }
  }

  const T* x = transformed_X.data<T>();

  int iwo_group = groups;
  int c_group = 1;
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
  iwo_group = 1;
  c_group = groups;
  groups = 1;
#endif
  auto dtype = paddle::platform::CudnnDataType<T>::type;

  auto handle = ctx.cudnn_handle();
  auto layout = paddle::platform::GetCudnnTensorFormat(
      paddle::platform::DataLayout::kNCHW);

  ConvArgs args1{handle,
                 &transformed_ddX,
                 W,
                 &transformed_ddO_channel,
                 strides,
                 padding_common,
                 dilations,
                 dtype,
                 groups,
                 paddle::platform::DataLayout::kNCHW};
  ConvArgs args2{handle,
                 &transformed_X,
                 ddW,
                 &transformed_ddO_channel,
                 strides,
                 padding_common,
                 dilations,
                 dtype,
                 groups,
                 paddle::platform::DataLayout::kNCHW};
  ConvArgs args3{handle,
                 &transformed_ddX,
                 dW,
                 &transformed_dO_channel,
                 strides,
                 padding_common,
                 dilations,
                 dtype,
                 groups,
                 paddle::platform::DataLayout::kNCHW};
  ConvArgs args4{handle,
                 &transformed_dX,
                 ddW,
                 &transformed_dO_channel,
                 strides,
                 padding_common,
                 dilations,
                 dtype,
                 groups,
                 paddle::platform::DataLayout::kNCHW};

#ifdef PADDLE_WITH_HIP
  SearchResult<miopenConvFwdAlgorithm_t> fwd_result1;
  SearchResult<miopenConvFwdAlgorithm_t> fwd_result2;
  SearchResult<miopenConvBwdDataAlgorithm_t> data_result;
  SearchResult<miopenConvBwdWeightsAlgorithm_t> filter_result;
#else
  SearchResult<cudnnConvolutionFwdAlgo_t> fwd_result1;
  SearchResult<cudnnConvolutionFwdAlgo_t> fwd_result2;
  SearchResult<cudnnConvolutionBwdDataAlgo_t> data_result;
  SearchResult<cudnnConvolutionBwdFilterAlgo_t> filter_result;
#endif

  // ddo = conv(ddI, W) + conv(I, ddW)
  size_t workspace_size = 0;

  T* transformed_ddy_channel = nullptr;
  if (ddO) {
    ddy = ddO->data<T>();
    transformed_ddy_channel = transformed_ddO_channel.data<T>();
    if (ddX) {
      args1.idesc.set(transformed_ddX, iwo_group);
      args1.wdesc.set(*W, layout, iwo_group);
      args1.odesc.set(transformed_ddO_channel, iwo_group);
      args1.cdesc.set(dtype,
                      padding_common,
                      strides,
                      dilations,
                      paddle::platform::AllowTF32Cudnn(),
                      c_group);

#ifdef PADDLE_WITH_HIP
      using search1 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
      workspace_size = search1::GetWorkspaceSize(args1);
      fwd_result1.algo = search1::Find<T>(
          args1, exhaustive_search, false, workspace_size, ctx);
#else
935
      using search1 = SearchAlgorithm<ConvKind::kForward>;
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
      fwd_result1 = search1::Find<T>(ctx, args1, exhaustive_search, false);
      workspace_size = search1::GetWorkspaceSize(args1, fwd_result1.algo);
#endif
    }

    if (ddW) {
      ddw = ddW->data<T>();
      args2.idesc.set(transformed_X, iwo_group);
      args2.wdesc.set(*ddW, layout, iwo_group);
      args2.odesc.set(transformed_ddO_channel, iwo_group);
      args2.cdesc.set(dtype,
                      padding_common,
                      strides,
                      dilations,
                      paddle::platform::AllowTF32Cudnn(),
                      c_group);

#ifdef PADDLE_WITH_HIP
      using search2 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
      workspace_size =
          std::max(workspace_size, search2::GetWorkspaceSize(args2));
      fwd_result2.algo = search2::Find<T>(
          args2, exhaustive_search, false, workspace_size, ctx);
#else
960
      using search2 = SearchAlgorithm<ConvKind::kForward>;
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
      fwd_result2 = search2::Find<T>(ctx, args2, exhaustive_search, false);
      workspace_size = std::max(
          workspace_size, search2::GetWorkspaceSize(args2, fwd_result2.algo));
#endif
    }
  }

  if (dW && ddX) {
    dw = dW->data<T>();
    args3.idesc.set(transformed_ddX, iwo_group);
    args3.wdesc.set(*dW, layout, iwo_group);
    args3.odesc.set(transformed_dO_channel, iwo_group);
    args3.cdesc.set(dtype,
                    padding_common,
                    strides,
                    dilations,
                    paddle::platform::AllowTF32Cudnn(),
                    c_group);

#ifdef PADDLE_WITH_HIP
    using search3 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
    workspace_size = std::max(workspace_size, search3::GetWorkspaceSize(args3));
    filter_result.algo = search3::Find<T>(
        args3, exhaustive_search, deterministic, workspace_size, ctx);
#else
986
    using search3 = SearchAlgorithm<ConvKind::kBackwardFilter>;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    filter_result =
        search3::Find<T>(ctx, args3, exhaustive_search, deterministic);
    workspace_size = std::max(
        workspace_size, search3::GetWorkspaceSize(args3, filter_result.algo));
#endif
  }

  if (ddW && dX) {
    transformed_dx = transformed_dX.data<T>();

    args4.idesc.set(transformed_dX, iwo_group);
    args4.wdesc.set(*ddW, layout, iwo_group);
    args4.odesc.set(transformed_dO_channel, iwo_group);
    args4.cdesc.set(dtype,
                    padding_common,
                    strides,
                    dilations,
                    paddle::platform::AllowTF32Cudnn(),
                    c_group);

#ifdef PADDLE_WITH_HIP
    using search4 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
    workspace_size = std::max(workspace_size, search4::GetWorkspaceSize(args4));
    data_result.algo = search4::Find<T>(
        args4, exhaustive_search, deterministic, workspace_size, ctx);
#else
1013
    using search4 = SearchAlgorithm<ConvKind::kBackwardData>;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    data_result =
        search4::Find<T>(ctx, args4, exhaustive_search, deterministic);
    workspace_size = std::max(
        workspace_size, search4::GetWorkspaceSize(args4, data_result.algo));
#endif
  }

  int i_n, i_c, i_d, i_h, i_w;
  GetNCDHW(
      transformed_X.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w);

  int o_n, o_c, o_d, o_h, o_w;
  GetNCDHW(transformed_dO_channel.dims(),
           DataLayout::kNCHW,
           &o_n,
           &o_c,
           &o_d,
           &o_h,
           &o_w);

  int group_offset_in = i_c / groups * i_h * i_w * i_d;
  int group_offset_out = o_c / groups * o_h * o_w * o_d;
  int group_offset_filter = W->numel() / groups;

  ScalingParamType<T> alpha = 1.0f;
  ScalingParamType<T> beta = 0.0f;

  // NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
  // ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f :
  // 0.0f;
  // VLOG(4) << "Conv_grad_grad: use_addto = " << ctx.Attr<bool>("use_addto");
  auto workspace_handle = ctx.cudnn_workspace_handle();

  if (ddO) {
    if (ddX) {
      ddx = transformed_ddX.data<T>();
#ifdef PADDLE_WITH_HIP
      workspace_handle.RunFunc(
          [&](void* workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::miopenConvolutionForward(
                    handle,
                    &alpha,
                    args1.idesc.desc(),
                    ddx,
                    args1.wdesc.desc(),
                    w,
                    args1.cdesc.desc(),
                    fwd_result1.algo,
                    &beta,
                    args1.odesc.desc(),
                    transformed_ddy_channel,
                    workspace_ptr,
                    workspace_size));
          },
          workspace_size);
#else
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
      ConvRunner<T, ConvKind::kForward>::Apply(ctx,
                                               args1,
                                               fwd_result1,
                                               ddx,
                                               w,
                                               transformed_ddy_channel,
                                               groups,
                                               group_offset_in,
                                               group_offset_filter,
                                               group_offset_out,
                                               workspace_size,
                                               &workspace_handle,
                                               false);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
#endif
    }
    if (ddW) {
#ifdef PADDLE_WITH_HIP
      // MIOPEN ONLY support beta to be 0.0f
      workspace_handle.RunFunc(
          [&](void* workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::miopenConvolutionForward(
                    handle,
                    &alpha,
                    args2.idesc.desc(),
                    x,
                    args2.wdesc.desc(),
                    ddw,
                    args2.cdesc.desc(),
                    fwd_result2.algo,
                    &beta,
                    args2.odesc.desc(),
                    transformed_ddy_channel,
                    workspace_ptr,
                    workspace_size));
          },
          workspace_size);
#else
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
      ConvRunner<T, ConvKind::kForward>::Apply(ctx,
                                               args2,
                                               fwd_result2,
                                               x,
                                               ddw,
                                               transformed_ddy_channel,
                                               groups,
                                               group_offset_in,
                                               group_offset_filter,
                                               group_offset_out,
                                               workspace_size,
                                               &workspace_handle,
                                               true);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
#endif
    }
    if (channel_last) {
      TransToChannelLast<Context, T>(ctx, &transformed_ddO_channel, ddO);
    }
  }
  T* transformed_dy_channel = transformed_dO_channel.data<T>();
  if (dW && ddX) {
    ddx = transformed_ddX.data<T>();
#ifdef PADDLE_WITH_HIP
    workspace_handle.RunFunc(
        [&](void* workspace_ptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              paddle::platform::dynload::miopenConvolutionBackwardWeights(
                  handle,
                  &alpha,
                  args3.odesc.desc(),
                  transformed_dy_channel,
                  args3.idesc.desc(),
                  ddx,
                  args3.cdesc.desc(),
                  filter_result.algo,
                  &beta,
                  args3.wdesc.desc(),
                  dw,
                  workspace_ptr,
                  workspace_size));
        },
        workspace_size);
#else
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    ConvRunner<T, ConvKind::kBackwardFilter>::Apply(ctx,
                                                    args3,
                                                    filter_result,
                                                    transformed_dy_channel,
                                                    ddx,
                                                    dw,
                                                    groups,
                                                    group_offset_in,
                                                    group_offset_filter,
                                                    group_offset_out,
                                                    workspace_size,
                                                    &workspace_handle,
                                                    false);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
#endif
  }

  if (dX && ddW) {
    ddw = ddW->data<T>();
#ifdef PADDLE_WITH_HIP
    workspace_handle.RunFunc(
        [&](void* workspace_ptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              paddle::platform::dynload::miopenConvolutionBackwardData(
                  handle,
                  &alpha,
                  args4.odesc.desc(),
                  transformed_dy_channel,
                  args4.wdesc.desc(),
                  ddw,
                  args4.cdesc.desc(),
                  data_result.algo,
                  &beta,
                  args4.idesc.desc(),
                  transformed_dx,
                  workspace_ptr,
                  workspace_size));
        },
        workspace_size);
#else
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    ConvRunner<T, ConvKind::kBackwardData>::Apply(ctx,
                                                  args4,
                                                  data_result,
                                                  transformed_dy_channel,
                                                  ddw,
                                                  transformed_dx,
                                                  groups,
                                                  group_offset_in,
                                                  group_offset_filter,
                                                  group_offset_out,
                                                  workspace_size,
                                                  &workspace_handle,
                                                  false);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
#endif

    if (!is_sys_pad) {
      // reverse padded input
      std::vector<int> starts(X->dims().size(), 0);
      std::vector<int> axes(X->dims().size(), 0);

      for (size_t i = 0; i < X->dims().size(); ++i) {
        starts[i] = input_pad[2 * i];
        axes[i] = i;
      }
      if (X->dims().size() == 4) {
        RemovePaddingSlice<Context, T, 4>(
            ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
      } else {
        RemovePaddingSlice<Context, T, 5>(
            ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
      }
    }
    if (channel_last) {
      TransToChannelLast<Context, T>(ctx, &transformed_dX_channel, dX);
    }
  }
}

template <typename T, typename Context>
void DepthwiseConvDoubleGradGPUDNNKernel(
    const Context& ctx,
    const DenseTensor& input,
    const DenseTensor& filter,
    const DenseTensor& out_grad,
    const paddle::optional<DenseTensor>& input_grad_grad,
    const paddle::optional<DenseTensor>& filter_grad_grad,
    const std::vector<int>& strides,
    const std::vector<int>& paddings_t,
    const std::string& padding_algorithm,
    int groups,
    const std::vector<int>& dilations_t,
    const std::string& data_format,
    DenseTensor* input_grad,
    DenseTensor* filter_grad,
    DenseTensor* out_grad_grad) {
  ConvCudnnGradGradKernel<T>(ctx,
                             input,
                             filter,
                             out_grad,
                             input_grad_grad,
                             filter_grad_grad,
                             strides,
                             paddings_t,
                             padding_algorithm,
                             dilations_t,
                             groups,
                             data_format,
                             input_grad,
                             filter_grad,
                             out_grad_grad);
}

template <typename T, typename Context>
1264
void Conv3DCudnnDoubleGradKernel(
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    const Context& ctx,
    const DenseTensor& input,
    const DenseTensor& filter,
    const DenseTensor& out_grad,
    const paddle::optional<DenseTensor>& input_grad_grad,
    const paddle::optional<DenseTensor>& filter_grad_grad,
    const std::vector<int>& strides,
    const std::vector<int>& paddings_t,
    const std::string& padding_algorithm,
    int groups,
    const std::vector<int>& dilations_t,
    const std::string& data_format,
    DenseTensor* input_grad,
    DenseTensor* filter_grad,
    DenseTensor* out_grad_grad) {
  ConvCudnnGradGradKernel<T>(ctx,
                             input,
                             filter,
                             out_grad,
                             input_grad_grad,
                             filter_grad_grad,
                             strides,
                             paddings_t,
                             padding_algorithm,
                             dilations_t,
                             groups,
                             data_format,
                             input_grad,
                             filter_grad,
                             out_grad_grad);
}

H
hong 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradKernel,
                   float,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(conv3d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnGradKernel,
                   float,
                   phi::dtype::float16) {}
H
hong 已提交
1313 1314 1315 1316 1317 1318 1319

PD_REGISTER_KERNEL(depthwise_conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::DepthwiseConvCudnnGradKernel,
                   float,
                   phi::dtype::float16) {}
1320 1321 1322 1323 1324 1325 1326
PD_REGISTER_KERNEL(conv2d_grad_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradGradKernel,
                   float,
                   phi::dtype::float16) {}

1327
PD_REGISTER_KERNEL(conv3d_double_grad,
1328 1329
                   GPUDNN,
                   ALL_LAYOUT,
1330
                   phi::Conv3DCudnnDoubleGradKernel,
1331 1332 1333
                   float,
                   phi::dtype::float16) {}

1334
PD_REGISTER_KERNEL(depthwise_conv2d_double_grad,
1335 1336 1337 1338 1339
                   GPU,
                   ALL_LAYOUT,
                   phi::DepthwiseConvDoubleGradGPUDNNKernel,
                   float,
                   phi::dtype::float16) {}
H
hong 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
#else
#if CUDNN_VERSION_MIN(8, 1, 0)
PD_REGISTER_KERNEL(conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(conv3d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
1359 1360 1361 1362 1363 1364 1365 1366 1367
PD_REGISTER_KERNEL(conv2d_grad_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}

1368
PD_REGISTER_KERNEL(conv3d_double_grad,
1369 1370
                   GPUDNN,
                   ALL_LAYOUT,
1371
                   phi::Conv3DCudnnDoubleGradKernel,
1372 1373 1374 1375 1376
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}

1377
PD_REGISTER_KERNEL(depthwise_conv2d_double_grad,
1378 1379 1380 1381 1382 1383 1384
                   GPU,
                   ALL_LAYOUT,
                   phi::DepthwiseConvDoubleGradGPUDNNKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
H
hong 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
#else
PD_REGISTER_KERNEL(conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(conv3d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

1402 1403 1404 1405 1406 1407 1408 1409
PD_REGISTER_KERNEL(conv2d_grad_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

1410
PD_REGISTER_KERNEL(conv3d_double_grad,
1411 1412
                   GPUDNN,
                   ALL_LAYOUT,
1413
                   phi::Conv3DCudnnDoubleGradKernel,
1414 1415 1416 1417
                   float,
                   double,
                   phi::dtype::float16) {}

1418
PD_REGISTER_KERNEL(depthwise_conv2d_double_grad,
1419 1420 1421 1422 1423 1424
                   GPU,
                   ALL_LAYOUT,
                   phi::DepthwiseConvDoubleGradGPUDNNKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
H
hong 已提交
1425 1426 1427
#endif

#endif