operator.cc 39.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_proto_maker.h"
27
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
31
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
32

D
dzhwinter 已提交
33
DECLARE_bool(benchmark);
C
chengduoZH 已提交
34 35 36
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
Qiao Longfei 已提交
37
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
D
dzhwinter 已提交
38

Q
Qiao Longfei 已提交
39 40 41
namespace paddle {
namespace framework {

42 43 44 45
OpDuppy op_duppy;
Scope scope_duppy;
RuntimeContext runtime_context_duppy({}, {});

46 47 48 49 50 51
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
52

Q
qiaolongfei 已提交
53 54
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
55
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
56
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
57
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
58 59 60 61 62
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

63 64
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
65
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
66 67
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
68 69
  }

M
minqiyang 已提交
70 71
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
72 73 74
    if (UNLIKELY(!tensor.IsInitialized())) {
      return DDim({-1});
    }
M
minqiyang 已提交
75 76 77 78 79 80 81
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
82 83 84 85 86
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
87 88 89 90 91 92
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
93 94 95 96 97
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
98

M
minqiyang 已提交
99 100 101
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
102 103
      return "";
    }
Y
Yu Yang 已提交
104
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
105
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
106 107 108 109
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
110
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
111
    }
D
dzhwinter 已提交
112 113 114 115 116
  } else {
    return "";
  }
}

117 118 119 120 121 122
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
123 124
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
125 126 127 128 129
  }

  return -1;
}

130
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
131 132 133 134 135 136 137
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
138 139
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
140 141 142
    if (UNLIKELY(!tensor.IsInitialized())) {
      return default_lod;
    }
M
minqiyang 已提交
143
    return tensor.lod();
Q
Qiao Longfei 已提交
144 145 146 147 148
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
149 150 151 152 153
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
154
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
155 156 157 158 159 160
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
161
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
162 163 164 165 166 167
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

168
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
169 170 171
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
172
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
173
      PADDLE_THROW("Cannot run operator on place %s", place);
174
#else
P
peizhilin 已提交
175 176
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
177
#endif
P
peizhilin 已提交
178
    }
P
peizhilin 已提交
179

P
peizhilin 已提交
180 181 182 183 184
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
185
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
186 187 188 189
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
190

P
peizhilin 已提交
191 192 193
    VLOG(3) << place << " " << DebugStringEx(&scope);
  } catch (platform::EnforceNotMet exception) {
    if (Attrs().count("sub_block") != 0) {
194
      throw std::move(exception);
P
peizhilin 已提交
195
    }
196

P
peizhilin 已提交
197 198 199 200
    auto& callstack = Attr<std::vector<std::string>>(
        OpProtoAndCheckerMaker::OpCreationCallstackAttrName());

    if (callstack.empty()) {
201
      throw std::move(exception);
P
peizhilin 已提交
202 203 204 205 206 207 208 209 210 211
    }
    std::ostringstream sout;
    sout << "Invoke operator " << Type() << " error.\n";
    sout << "Python Callstacks: \n";
    for (auto& line : callstack) {
      sout << line;
    }
    sout << "C++ Callstacks: \n";
    sout << exception.err_str_;
    exception.err_str_ = sout.str();
212
    throw std::move(exception);
P
peizhilin 已提交
213 214
  } catch (...) {
    std::rethrow_exception(std::current_exception());
215
  }
216 217
}

218
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
219
  return inputs_.find(name) != inputs_.end();
220 221
}

222
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
223
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
224
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
225 226
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
227
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
228 229
}

Y
Yu Yang 已提交
230 231
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
232
  auto it = inputs_.find(name);
233 234
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
235
  return it->second;
Y
Yan Chunwei 已提交
236 237
}

238
bool OperatorBase::HasOutputs(const std::string& name) const {
239
  if (outputs_.find(name) != outputs_.end()) {
240 241 242 243 244 245
    return true;
  } else {
    return false;
  }
}

246
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
247
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
248
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
249 250
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
251
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
252 253
}

Y
Yu Yang 已提交
254 255
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
256
  auto it = outputs_.find(name);
257 258
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
259
  return it->second;
Y
Yan Chunwei 已提交
260 261
}

262
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
263
  std::stringstream ss;
Y
Yu Yang 已提交
264
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
265 266
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
267 268
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
269 270
      auto var_name = input.second[i];
      ss << var_name;
271
      if (scope) {
Q
Qiao Longfei 已提交
272 273 274 275 276 277 278 279 280
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
281 282
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
283
        }
284
      }
Y
Yu Yang 已提交
285 286 287
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
288
    }
Y
Yu Yang 已提交
289
    ss << "]";
Y
Yu Yang 已提交
290 291
    ++it;
    if (it != inputs_.end()) {
292 293
      ss << ", ";
    }
Q
Qiao Longfei 已提交
294
  }
Y
Yu Yang 已提交
295
  ss << "}, outputs:{";
Y
Yu Yang 已提交
296 297
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
298 299
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
300 301
      auto var_name = output.second[i];
      ss << var_name;
302
      if (scope) {
Q
Qiao Longfei 已提交
303 304 305 306 307 308 309
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
310 311
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
312 313
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
314
        }
315
      }
Y
Yu Yang 已提交
316 317 318
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
319
    }
Y
Yu Yang 已提交
320
    ss << "]";
Y
Yu Yang 已提交
321 322
    ++it;
    if (it != outputs_.end()) {
323 324
      ss << ", ";
    }
Q
Qiao Longfei 已提交
325
  }
Y
Yu Yang 已提交
326
  ss << "}.";
Q
Qiao Longfei 已提交
327 328 329
  return ss.str();
}

Y
Yu Yang 已提交
330
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
331 332
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
333
                           const AttributeMap& attrs)
S
sneaxiy 已提交
334 335 336 337 338 339
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
340 341
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
342
}
343

Q
qijun 已提交
344 345
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
346
  for (auto& o : inputs_) {
Q
qijun 已提交
347 348 349 350 351 352
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
353 354 355 356 357 358 359 360 361 362
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
363
  auto& info = Info();
Y
Yu Yang 已提交
364 365

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
366
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
367 368 369 370 371 372 373 374 375
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
376 377
}

378
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
379
  if (info_ == nullptr || info_->proto_ == nullptr) return;
380

S
sneaxiy 已提交
381
  for (auto& in : info_->Proto().inputs()) {
382 383 384 385
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
386 387
  }

S
sneaxiy 已提交
388
  for (auto& out : info_->Proto().outputs()) {
389 390 391 392 393
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
410
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
411
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
412 413
}

C
chengduo 已提交
414
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
415 416 417 418
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
419
  } else {
Y
Yang Yang 已提交
420
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
421
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
422 423 424
  }
}

C
chengduo 已提交
425
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
426
  if (var->IsType<LoDTensor>()) {
427
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
428
  } else if (var->IsType<SelectedRows>()) {
429
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
430
  } else {
Y
Yang Yang 已提交
431
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
432
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
433 434 435
  }
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
468 469 470 471 472 473 474 475 476 477
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
478
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
479 480 481 482 483 484 485 486 487
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

488
template <>
489
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
490
  return Input<LoDTensor>(name);
491 492 493
}

template <>
494
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
495
    const std::string& name) const {
X
Xin Pan 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
509
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
510 511 512 513 514
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

515
template <>
516
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
517
  return Output<LoDTensor>(name);
518 519 520
}

template <>
521
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
522
    const std::string& name) const {
523 524 525 526 527
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
528
  std::vector<Tensor*> res;
529 530 531 532 533
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
534
                 });
535 536 537
  return res;
}

Y
Yu Yang 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

553 554
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
555 556
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
557
      : op_(op), ctx_(ctx) {}
558 559

  bool HasInput(const std::string& name) const override {
560
    // has only one input
X
Xin Pan 已提交
561
    const auto& ins = ctx_.inputs;
562 563
    auto it = ins.find(name);
    if (it == ins.end()) {
564 565
      return false;
    }
566
    const auto& in = it->second;
X
Xin Pan 已提交
567
    if (in.size() == 0) return false;
T
tensor-tang 已提交
568
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
569
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
570
    return in[0] != nullptr;
571 572 573
  }

  bool HasOutput(const std::string& name) const override {
574
    // has only one output
X
Xin Pan 已提交
575
    const auto& outs = ctx_.outputs;
576 577
    auto it = outs.find(name);
    if (it == outs.end()) {
578 579
      return false;
    }
580
    const auto& out = it->second;
X
Xin Pan 已提交
581
    if (out.size() == 0) {
582 583
      return false;
    }
T
tensor-tang 已提交
584 585
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
586
    return out[0] != nullptr;
587 588 589
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
590 591
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
592
    if (it == ins.end() || it->second.empty()) {
593 594
      return false;
    }
X
Xin Pan 已提交
595 596
    for (auto& input : it->second) {
      if (input == nullptr) {
597 598 599 600 601 602 603
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
604 605
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
606
    if (it == outs.end() || it->second.empty()) {
607 608
      return false;
    }
X
Xin Pan 已提交
609 610
    for (auto& output : it->second) {
      if (output == nullptr) {
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

629 630
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
631 632 633 634 635 636 637 638 639
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
640 641

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
642
                   "The type of %s and %s is not the same.", in, out);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
661 662
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
663 664 665 666 667 668 669 670
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
671
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
672
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
673 674 675 676 677
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
678

M
mozga-intel 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
698 699
  }

C
chengduo 已提交
700 701 702 703 704
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

705 706
  bool IsRuntime() const override { return true; }

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
739 740 741 742 743 744 745 746 747 748
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

763
 protected:
X
Xin Pan 已提交
764
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
765
    PADDLE_ENFORCE_NOT_NULL(var);
766 767 768 769 770
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
771
      PADDLE_THROW(
X
Xin Pan 已提交
772
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
773
          "type_id is %s.",
S
sneaxiy 已提交
774
          ToTypeName(var->Type()));
F
fengjiayi 已提交
775 776 777
    }
  }

X
Xin Pan 已提交
778 779 780 781 782 783 784 785
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
786
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
787
    PADDLE_THROW("Only compile time support this method");
788 789
  }

X
Xin Pan 已提交
790
  void SetDim(Variable* var, const DDim& dim) {
791 792 793 794 795
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
796
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
797
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
798 799 800 801 802 803 804 805 806 807 808 809
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
810 811 812
    }
  }

F
fengjiayi 已提交
813 814
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
815
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
816 817
  }

X
Xin Pan 已提交
818 819 820 821 822 823 824 825 826 827 828
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
829 830 831
    return ToVarType(var->Type());
  }

832 833 834 835 836 837 838 839 840 841 842 843 844 845
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
846 847
  }

848
  const OperatorBase& op_;
X
Xin Pan 已提交
849
  const RuntimeContext& ctx_;
850 851
};

852 853
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
854 855 856 857
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
858 859
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
860 861 862
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
863
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
864
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
865
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
866 867
}

B
baojun-nervana 已提交
868
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
869 870 871
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
872 873 874
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
875 876 877 878 879 880 881 882 883 884
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
885 886
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
887 888 889 890
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
  if (!enable_cache_runtime_context && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context = true;
L
luotao1 已提交
891 892
  if (!enable_cache_expected_kernel && HasAttr(kEnableCacheExpectedKernel))
    enable_cache_expected_kernel = true;
L
luotao1 已提交
893 894 895 896
  if (!all_kernels_must_compute_runtime_shape &&
      HasAttr(kAllKernelsMustComputeRuntimeShape))
    all_kernels_must_compute_runtime_shape = true;
  if (!enable_cache_runtime_context) {
L
luotao1 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
    if (!runtime_ctx_ || pre_scope_ != cur_scope) {
      runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
      pre_scope_ = cur_scope;
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
912
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
913
  auto* dev_ctx = pool.Get(place);
914

L
luotao1 已提交
915
  if (!enable_cache_expected_kernel || !kernel_type_) {
916
    ChooseKernel(*runtime_ctx, scope, place);
917 918
  }

L
Liu Yiqun 已提交
919
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
920

Y
yuyang18 已提交
921 922
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
923
  auto* transfer_scope =
924
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
925

Y
yuyang18 已提交
926 927 928 929
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

930 931
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
932
  }
Q
QI JUN 已提交
933

L
luotao1 已提交
934
  if (!all_kernels_must_compute_runtime_shape) {
L
luotao1 已提交
935
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
936 937
    this->InferShape(&infer_shape_ctx);
  }
X
clean  
Xin Pan 已提交
938 939
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
940 941
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
942

Y
yuyang18 已提交
943 944 945
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
946 947
  }

D
dzhwinter 已提交
948
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
949
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
950
    dev_ctx->Wait();
D
dzhwinter 已提交
951
  }
C
chengduoZH 已提交
952 953 954

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
955
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
956 957
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
958
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
959
      } else if (var->IsType<framework::SelectedRows>()) {
960 961
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
962 963 964
      }
    }
  }
Q
Qiao Longfei 已提交
965
}
X
Xin Pan 已提交
966

L
Liu Yiqun 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

  kernel_type_.reset(new OpKernelType(expected_kernel_key));
  kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
}

Y
yuyang18 已提交
1007 1008 1009 1010
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1011
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1012 1013 1014
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1015
    auto* original_tensor =
C
chengduo 已提交
1016
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1017
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1018 1019
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1020
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1021 1022 1023 1024
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1025
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1026
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1027 1028
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1029
  Scope* new_scope = nullptr;
1030
  if (!need_prepare_data_) return new_scope;
S
sneaxiy 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

  std::unordered_set<std::string> no_buffer_ins;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = no_buffer_inferer(Inputs(), Outputs(), Attrs());
    }
  }

Y
yuyang18 已提交
1041
  for (auto& var_name_item : Inputs()) {
S
sneaxiy 已提交
1042 1043 1044 1045 1046
    // NOTE(zjl): STL does not guarantee fast std::unordered_set::count when set
    // is empty. At least STL implemented on my mac does calculate hash code
    // of search key even though the set is empty.
    if (!no_buffer_ins.empty() &&
        no_buffer_ins.count(var_name_item.first) > 0) {
G
gongweibao 已提交
1047
      VLOG(7) << "Skip scanning input " << var_name_item.first
S
sneaxiy 已提交
1048
              << " in Operator " << type_;
S
sneaxiy 已提交
1049 1050 1051
      continue;
    }

X
Xin Pan 已提交
1052 1053 1054 1055
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1056
      auto* var = input_vars[i];
X
Xin Pan 已提交
1057

Y
yuyang18 已提交
1058
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1059
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1060 1061 1062
        continue;
      }

C
chengduo 已提交
1063
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1081 1082
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1099
      }
1100
      if (!new_scope) {
Y
yuyang18 已提交
1101 1102
        new_scope = &scope.NewScope();
      }
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context, we get the cpu tensor each
      // time, not the gpu tensor.
      // Thus, we set pre_scope_ = nullptr to trigger `new RuntimeContext()` in
      // RunImpl().
      if (enable_cache_runtime_context) {
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1114 1115

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1116
      input_vars[i] = trans_var;
1117

Y
yuyang18 已提交
1118
      Tensor out;
Y
yuyang18 已提交
1119
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1120 1121 1122
      SetTensorToVariable(*var, out, trans_var);
    }
  }
1123 1124 1125 1126
  // If new_scope = nullptr, it means that for each input of this Op, there is
  // no TransformData. Thus, PrepareData could be skipped at the rest iterations
  // of this Op's execution to save the elapsed time.
  if (!new_scope) need_prepare_data_ = false;
Y
yuyang18 已提交
1127 1128 1129

  return new_scope;
}
Q
Qiao Longfei 已提交
1130

1131
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1132
    const ExecutionContext& ctx) const {
1133 1134 1135
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
Y
Yu Yang 已提交
1136
  for (auto& input : this->inputs_) {
X
Xin Pan 已提交
1137 1138 1139
    const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
    for (size_t i = 0; i < vars.size(); ++i) {
      const Variable* var = vars[i];
Y
Yu Yang 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
X
Xin Pan 已提交
1150 1151
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu)is not initialized",
                         input.first, i);
1152
          proto::VarType::Type tmp = t->type();
1153
          PADDLE_ENFORCE(
1154
              tmp == data_type || data_type == dafault_data_type,
1155
              "DataType of Paddle Op %s %s must be the same. Get (%s) != (%s)",
1156 1157
              Type(), input.first, DataTypeToString(data_type),
              DataTypeToString(tmp));
Y
Yu Yang 已提交
1158 1159 1160 1161 1162
          data_type = tmp;
        }
      }
    }
  }
1163 1164 1165
  PADDLE_ENFORCE(data_type != dafault_data_type,
                 "DataType should be indicated by input");
  return data_type;
Y
Yu Yang 已提交
1166
}
1167

1168 1169 1170 1171 1172 1173 1174 1175
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1176 1177
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1178 1179
}

Q
Qiao Longfei 已提交
1180
}  // namespace framework
L
liaogang 已提交
1181
}  // namespace paddle