profiler_statistic.py 33.4 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from enum import Enum

from paddle.fluid.core import TracerEventType

C
chenjian 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32
from .statistic_helper import *

_AllTracerEventType = [
    TracerEventType.Operator, TracerEventType.Dataloader,
    TracerEventType.ProfileStep, TracerEventType.CudaRuntime,
    TracerEventType.Kernel, TracerEventType.Memcpy, TracerEventType.Memset,
    TracerEventType.UserDefined, TracerEventType.OperatorInner,
    TracerEventType.Forward, TracerEventType.Backward,
    TracerEventType.Optimization, TracerEventType.Communication,
    TracerEventType.PythonOp, TracerEventType.PythonUserDefined
]

_CommunicationOpName = ['reduce', 'broadcast', 'rpc']

C
chenjian 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45

class SortedKeys(Enum):
    r"""
    Sorted keys for printing summary table.
    """
    CPUTotal = 0
    CPUAvg = 1
    CPUMax = 2
    CPUMin = 3
    GPUTotal = 4
    GPUAvg = 5
    GPUMax = 6
    GPUMin = 7
C
chenjian 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172


class HostStatisticNode:
    r'''
    Wrap original node for calculating statistic metrics.
    '''

    def __init__(self, hostnode):
        self.hostnode = hostnode
        self.children_node = []
        self.runtime_node = []
        self.cpu_time = 0
        self.self_cpu_time = 0
        self.gpu_time = 0
        self.self_gpu_time = 0

    def cal_statistic(self):
        for child in self.children_node:
            child.cal_statistic()
        for rt in self.runtime_node:
            rt.cal_statistic()

        self.cpu_time = self.hostnode.end_ns - self.hostnode.start_ns
        for child in self.children_node:
            self.gpu_time += child.gpu_time
            self.self_cpu_time -= (child.end_ns - child.start_ns)
        for rt in self.runtime_node:
            self.self_cpu_time -= (rt.end_ns - rt.start_ns)
            self.gpu_time += rt.gpu_time
            self.self_gpu_time += rt.gpu_time
        for device in self.hostnode.device_node:
            self.gpu_time += (device.end_ns - device.start_ns)
            self.self_gpu_time += (device.end_ns - device.start_ns)

    @property
    def end_ns(self):
        return self.hostnode.end_ns

    @property
    def start_ns(self):
        return self.hostnode.start_ns

    def __getattr__(self, name):
        return getattr(self.hostnode, name)


def traverse_tree(nodetrees):
    results = collections.defaultdict(list)
    for thread_id, rootnode in nodetrees.items():
        stack = []
        stack.append(rootnode)
        threadlist = results[thread_id]
        while stack:
            current_node = stack.pop()
            threadlist.append(current_node)
            for childnode in current_node.children_node:
                stack.append(childnode)
    return results


def wrap_tree(nodetrees):
    '''
    Using HostStatisticNode to wrap original profiler result tree, and calculate node statistic metrics.
    '''
    node_statistic_tree = {}
    results = collections.defaultdict(list)
    newresults = collections.defaultdict(list)
    for thread_id, rootnode in nodetrees.items():
        stack = []
        stack.append(rootnode)
        root_statistic_node = HostStatisticNode(rootnode)
        newstack = []
        newstack.append(root_statistic_node)
        node_statistic_tree[thread_id] = root_statistic_node
        threadlist = results[thread_id]
        newthreadlist = newresults[thread_id]
        while stack:
            current_node = stack.pop()
            threadlist.append(current_node)
            current_statistic_node = newstack.pop()
            newthreadlist.append(current_statistic_node)
            for childnode in current_node.children_node:
                stack.append(childnode)
                child_statistic_node = HostStatisticNode(childnode)
                current_statistic_node.children_node.append(
                    child_statistic_node)
                newstack.append(child_statistic_node)
            for runtimenode in current_node.runtime_node:
                runtime_statistic_node = HostStatisticNode(runtimenode)
                current_statistic_node.runtime_node.append(
                    runtime_statistic_node)
    # recursive calculate node statistic values
    for thread_id, root_statistic_node in node_statistic_tree.items():
        root_statistic_node.cal_statistic()

    return node_statistic_tree, newresults


class TimeRangeSummary:
    r"""
    Analyse time ranges for each TracerEventType, and summarize the time.
    """

    def __init__(self):
        self.CPUTimeRange = collections.defaultdict(list)
        self.GPUTimeRange = collections.defaultdict(
            lambda: collections.defaultdict(list)
        )  # GPU events should be divided into different devices
        self.CPUTimeRangeSum = collections.defaultdict(int)
        self.GPUTimeRangeSum = collections.defaultdict(
            lambda: collections.defaultdict(int))
        self.call_times = collections.defaultdict(int)

    def parse(self, nodetrees):
        r"""
        Analysis node trees in profiler result, and get time range for different tracer event type.
        """
        thread2hostnodes = traverse_tree(nodetrees)
        for threadid, hostnodes in thread2hostnodes.items():
            CPUTimeRange = collections.defaultdict(list)
            GPUTimeRange = collections.defaultdict(
                lambda: collections.defaultdict(lambda: collections.defaultdict(list))
            )  # device_id/type/stream_id
            for hostnode in hostnodes[1:]:  #skip root node
                CPUTimeRange[hostnode.type].append(
                    (hostnode.start_ns, hostnode.end_ns))
                self.call_times[hostnode.type] += 1
T
tianshuo78520a 已提交
173 174 175
                if hostnode.type == TracerEventType.Operator and any([
                        name in hostnode.name for name in _CommunicationOpName
                ]):  # special case, communication op
C
chenjian 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
                    CPUTimeRange[TracerEventType.Communication].append(
                        (hostnode.start_ns, hostnode.end_ns))
                    self.call_times[TracerEventType.Communication] += 1
                is_communication_node = (
                    hostnode.type == TracerEventType.Communication
                ) or (hostnode.type == TracerEventType.Operator and any(
                    [name in hostnode.name for name in _CommunicationOpName]))
                for runtimenode in hostnode.runtime_node:
                    CPUTimeRange[runtimenode.type].append(
                        (runtimenode.start_ns, runtimenode.end_ns))
                    self.call_times[runtimenode.type] += 1
                    for devicenode in runtimenode.device_node:
                        GPUTimeRange[devicenode.device_id][devicenode.type][
                            devicenode.stream_id].append(
                                (devicenode.start_ns, devicenode.end_ns))
                        self.call_times[devicenode.type] += 1
                        if is_communication_node:  # gpu activity for communication node
                            GPUTimeRange[devicenode.device_id][
                                TracerEventType.Communication][
                                    devicenode.stream_id].append((
                                        devicenode.start_ns, devicenode.end_ns))
                            self.call_times[TracerEventType.Communication] += 1

            for event_type, time_ranges in CPUTimeRange.items():
                time_ranges = merge_self_ranges(time_ranges, is_sorted=False)
                self.CPUTimeRange[event_type] = merge_ranges(
                    self.CPUTimeRange[event_type], time_ranges, is_sorted=True)
            for device_id, device_time_ranges in GPUTimeRange.items():
                for event_type, event_time_ranges in device_time_ranges.items():
                    for stream_id, time_ranges in event_time_ranges.items():
                        time_ranges = merge_self_ranges(
                            time_ranges, is_sorted=False)
                        self.GPUTimeRange[device_id][event_type] = merge_ranges(
                            self.GPUTimeRange[device_id][event_type],
                            time_ranges,
                            is_sorted=True)

        for event_type, time_ranges in self.CPUTimeRange.items():
            self.CPUTimeRangeSum[event_type] = sum_ranges(time_ranges)
        for device_id, device_time_ranges in self.GPUTimeRange.items():
            for event_type, time_ranges in device_time_ranges.items():
                self.GPUTimeRangeSum[device_id][event_type] = sum_ranges(
                    time_ranges)

    def get_gpu_devices(self):
        return self.GPUTimeRange.keys()

    def get_gpu_range_sum(self, device_id, event_type):
        return self.GPUTimeRangeSum[device_id][event_type]

    def get_cpu_range_sum(self, event_type):
        return self.CPUTimeRangeSum[event_type]


class EventSummary:
    r"""
    Analyse operator event in profiling data, correlate with its device event.
    """

    class DeviceItem:
        def __init__(self, name):
            self.name = name
            self.call = 0
            self.gpu_time = 0
            self.max_gpu_time = 0
            self.min_gpu_time = float('inf')

        @property
        def avg_gpu_time(self):
            return self.gpu_time / self.call

        def add_gpu_time(self, time):
            if time > self.max_gpu_time:
                self.max_gpu_time = time
            if time < self.min_gpu_time:
                self.min_gpu_time = time
            self.gpu_time += time

        def add_item(self, node):
            self.call += 1
            self.add_gpu_time(node.end_ns - node.start_ns)

    class OperatorItem:
        def __init__(self, name):
            self.name = name
            self.call = 0
            self.cpu_time = 0
            self.gpu_time = 0
            self.max_cpu_time = 0
            self.min_cpu_time = float('inf')
            self.max_gpu_time = 0
            self.min_gpu_time = float('inf')
            self.devices = {}
            self.operator_inners = {}

        @property
        def avg_cpu_time(self):
            return self.cpu_time / self.call

        @property
        def avg_gpu_time(self):
            return self.gpu_time / self.call

        def add_cpu_time(self, time):
            if time > self.max_cpu_time:
                self.max_cpu_time = time
            if time < self.min_cpu_time:
                self.min_cpu_time = time
            self.cpu_time += time

        def add_gpu_time(self, time):
            if time > self.max_gpu_time:
                self.max_gpu_time = time
            if time < self.min_gpu_time:
                self.min_gpu_time = time
            self.gpu_time += time

        def add_call(self):
            self.call += 1

        def add_item(self, node):
            self.add_call()
            self.add_cpu_time(node.cpu_time)
            self.add_gpu_time(node.gpu_time)
            for child in node.children_node:
                if child.name not in self.operator_inners:
                    self.operator_inners[
                        child.name] = EventSummary.OperatorItem(child.name)
                self.operator_inners[child.name].add_item(child)

            for runtimenode in node.runtime_node:
                for devicenode in runtimenode.device_node:
                    if devicenode.name not in self.devices:
                        self.devices[devicenode.name] = EventSummary.DeviceItem(
                            devicenode.name)
                    self.devices[devicenode.name].add_item(devicenode)

    class GeneralItem:
        def __init__(self, name):
            self.name = name
            self.call = 0
            self.cpu_time = 0
            self.max_cpu_time = 0
            self.min_cpu_time = float('inf')
            self.gpu_time = 0
            self.max_gpu_time = 0
            self.min_gpu_time = float('inf')

        @property
        def avg_cpu_time(self):
            return self.cpu_time / self.call

        @property
        def avg_gpu_time(self):
            return self.gpu_time / self.call

        def add_cpu_time(self, time):
            if time > self.max_cpu_time:
                self.max_cpu_time = time
            if time < self.min_cpu_time:
                self.min_cpu_time = time
            self.cpu_time += time

        def add_gpu_time(self, time):
            if time > self.max_gpu_time:
                self.max_gpu_time = time
            if time < self.min_gpu_time:
                self.min_gpu_time = time
            self.gpu_time += time

        def add_call(self):
            self.call += 1

        def add_item(self, node):
            self.add_call()
            self.add_cpu_time(node.cpu_time)
            self.add_gpu_time(node.gpu_time)

    def __init__(self):
        self.items = {}  # for operator summary
        self.thread_items = collections.defaultdict(
            dict)  # for operator summary
        self.userdefined_items = {}  # for userdefined summary
        self.userdefined_thread_items = collections.defaultdict(
            dict)  # for userdefined summary
        self.model_perspective_items = {}  # for model summary
        self.memory_manipulation_items = {}  # for memory manipulation summary

    def parse(self, nodetrees):
        r"""
        Analysis operator event in the nodetress.
        """
        node_statistic_trees, thread2host_statistic_nodes = wrap_tree(nodetrees)
        for threadid, host_statistic_nodes in thread2host_statistic_nodes.items(
        ):
            for host_statistic_node in host_statistic_nodes[
                    1:]:  #skip root node
                if host_statistic_node.type == TracerEventType.Operator:
                    self.add_operator_item(host_statistic_node)
                if host_statistic_node.type == TracerEventType.UserDefined\
                    or host_statistic_node.type == TracerEventType.PythonUserDefined:
                    if 'memcpy' in host_statistic_node.name.lower() or 'memorycopy' in host_statistic_node.name.lower()\
                        or 'memset' in host_statistic_node.name.lower():
                        self.add_memory_manipulation_item(host_statistic_node)
                    else:
                        self.add_userdefined_item(host_statistic_node)

        for threadid, root_statistic_node in node_statistic_trees.items():
            deque = collections.deque()
            deque.append(root_statistic_node)
            while deque:
                current_node = deque.popleft()
                for child in current_node.children_node:
                    if child.type == TracerEventType.Forward or child.type == TracerEventType.Dataloader\
                        or child.type == TracerEventType.Backward or child.type == TracerEventType.Optimization:
                        self.add_model_perspective_item(
                            child)  #find first model perspective node
                    else:
                        deque.append(child)

    def add_operator_item(self, operator_node):
        if operator_node.name not in self.items:
            self.items[operator_node.name] = EventSummary.OperatorItem(
                operator_node.name)

        self.items[operator_node.name].add_item(operator_node)

        if operator_node.name not in self.thread_items[operator_node.thread_id]:
            self.thread_items[operator_node.thread_id][
                operator_node.name] = EventSummary.OperatorItem(
                    operator_node.name)
        self.thread_items[operator_node.thread_id][operator_node.name].add_item(
            operator_node)

    def add_userdefined_item(self, userdefined_node):
        if userdefined_node.name not in self.userdefined_items:
            self.userdefined_items[
                userdefined_node.name] = EventSummary.GeneralItem(
                    userdefined_node.name)

        self.userdefined_items[userdefined_node.name].add_item(userdefined_node)

        if userdefined_node.name not in self.userdefined_thread_items[
                userdefined_node.thread_id]:
            self.userdefined_thread_items[userdefined_node.thread_id][
                userdefined_node.name] = EventSummary.GeneralItem(
                    userdefined_node.name)
        self.userdefined_thread_items[userdefined_node.thread_id][
            userdefined_node.name].add_item(userdefined_node)

    def add_memory_manipulation_item(self, memory_manipulation_node):
        if memory_manipulation_node.name not in self.memory_manipulation_items:
            self.memory_manipulation_items[
                memory_manipulation_node.name] = EventSummary.GeneralItem(
                    memory_manipulation_node.name)
        self.memory_manipulation_items[memory_manipulation_node.name].add_item(
            memory_manipulation_node)

    def add_model_perspective_item(self, model_perspective_node):
        if model_perspective_node.type == TracerEventType.Forward:
            name = 'Forward'
        elif model_perspective_node.type == TracerEventType.Backward:
            name = 'Backward'
        elif model_perspective_node.type == TracerEventType.Optimization:
            name = 'Optimization'
        elif model_perspective_node.type == TracerEventType.Dataloader:
            name = 'Dataloader'
        else:
            return
        if name not in self.model_perspective_items:
            self.model_perspective_items[name] = EventSummary.GeneralItem(name)
        self.model_perspective_items[name].add_item(model_perspective_node)


class StatisticData:
    r"""
    Hold all analysed results.
    """

    def __init__(self, node_trees, extra_info):
        self.node_trees = node_trees
        self.extra_info = extra_info
        self.time_range_summary = TimeRangeSummary()
        self.event_summary = EventSummary()
        self.time_range_summary.parse(node_trees)
        self.event_summary.parse(node_trees)


def _build_table(statistic_data,
                 sorted_by=SortedKeys.CPUTotal,
                 op_detail=True,
                 thread_sep=False,
                 time_unit='ms',
                 row_limit=100,
                 max_src_column_width=75):
    """Prints a summary of events."""
    # format table row
    SPACING_SIZE = 2
    row_format_list = [""]
    header_sep_list = [""]
    line_length_list = [-SPACING_SIZE]

    def add_column(padding, text_dir='<'):
        row_format_list[0] += '{: ' + text_dir + str(padding) + '}' + (
            ' ' * SPACING_SIZE)
        header_sep_list[0] += '-' * padding + (' ' * SPACING_SIZE)
        line_length_list[0] += padding + SPACING_SIZE

    def add_title(padding, text):
        left_length = padding - len(text)
        half = left_length // 2
        return '-' * half + text + '-' * (left_length - half)

    result = []

    def append(s):
        result.append(s)
        result.append('\n')

    def format_time(time, unit='ms', indent=0):
        r"""
        Transform time in ns to time in unit.
        """
        if time == float('inf'):
            return '-'
        else:
            result = float(time)
            if unit == 's':
                result /= 1e9
            elif unit == 'ms':
                result /= 1e6
            elif unit == 'us':
                result /= 1e3
            return '{}{:.2f}'.format(' ' * indent, result)

    def format_ratio(ratio, indent=0):
        r"""
        Transform ratio within [0, 1] to percentage presentation.
        """
        return '{}{:.2f}'.format(' ' * indent, ratio * 100)

    total_time = statistic_data.time_range_summary.get_cpu_range_sum(
        TracerEventType.ProfileStep)
    ###### Print Device Summary ######
    headers = ['Device', 'Utilization (%)']
    name_column_width = 30
    DEFAULT_COLUMN_WIDTH = 20
    add_column(name_column_width)
    for _ in headers[1:]:
        add_column(DEFAULT_COLUMN_WIDTH)

    row_format = row_format_list[0]
    header_sep = header_sep_list[0]
    line_length = line_length_list[0]

    # construct table string

    append(add_title(line_length, "Device Summary"))
    append('Time unit: {}'.format(time_unit))
    append(header_sep)
    append(row_format.format(*headers))
    append(header_sep)
    row_values = [
        'CPU(Process)', format_ratio(
            float(statistic_data.extra_info['Process Cpu Utilization']))
    ]
    append(row_format.format(*row_values))
    row_values = [
        'CPU(System)', format_ratio(
            float(statistic_data.extra_info['System Cpu Utilization']))
    ]
    append(row_format.format(*row_values))
    for gpu_name in statistic_data.time_range_summary.get_gpu_devices():
        gpu_time = float(
            statistic_data.time_range_summary.get_gpu_range_sum(
                gpu_name, TracerEventType.Kernel))
        utilization = gpu_time / total_time
        row_values = ['GPU{}'.format(gpu_name), format_ratio(utilization)]
        append(row_format.format(*row_values))

    append(header_sep)
    append(
        "Note:\nCPU(Process) Utilization = Current process CPU time over all cpu cores / elapsed time, so max utilization can be reached 100% * number of cpu cores.\n"
        "CPU(System) Utilization = All processes CPU time over all cpu cores(busy time) / (busy time + idle time).\n"
        "GPU Utilization = Current process GPU time / elapsed time")
    append('-' * line_length)
    append('')
    append('')

    if total_time == 0:
        return ''.join(result)

    ###### Print Overview Summary ######
    headers = ['Event Type', 'CPU Time', 'Ratio (%)']
    row_format_list = [""]
    header_sep_list = [""]
    line_length_list = [-SPACING_SIZE]

    DEFAULT_COLUMN_WIDTH = 25
    for _ in headers:
        add_column(DEFAULT_COLUMN_WIDTH)

    row_format = row_format_list[0]
    header_sep = header_sep_list[0]
    line_length = line_length_list[0]

    # construct table string
    append(add_title(line_length, "Overview Summary"))
    append('Time unit: {}'.format(time_unit))
    append(header_sep)
    append(row_format.format(*headers))
    append(header_sep)
    row_values = [
        'Total Time', format_time(
            total_time, unit=time_unit), format_ratio(1)
    ]
    append(row_format.format(*row_values))
    cpu_type_time = collections.defaultdict(int)
    gpu_type_time = collections.defaultdict(int)
    for event_type, value in statistic_data.time_range_summary.CPUTimeRangeSum.items(
    ):
        cpu_type_time[event_type] = value

    gpu_time_range = collections.defaultdict(list)
    for device_id, device_time_ranges in statistic_data.time_range_summary.GPUTimeRange.items(
    ):
        for event_type, time_range in device_time_ranges.items():
            gpu_time_range[event_type] = merge_ranges(
                gpu_time_range[event_type], time_range, is_sorted=True)
    for event_type, time_range in gpu_time_range.items():
        gpu_type_time[event_type] = sum_ranges(time_range)

    sorted_items = sorted(
        cpu_type_time.items(), key=lambda x: x[1], reverse=True)
    for event_type, time in sorted_items:
        row_values = [
            '  {}'.format(str(event_type).split('.')[1]), format_time(
                time, unit=time_unit), format_ratio(float(time) / total_time)
        ]
        append(row_format.format(*row_values))
    append(header_sep)
    headers = ['', 'GPU Time', 'Ratio (%)']
    append(row_format.format(*headers))
    append(header_sep)
    for event_type, time in gpu_type_time.items():
        row_values = [
            '  {}'.format(str(event_type).split('.')[1]), format_time(
                time, unit=time_unit), format_ratio(float(time) / total_time)
        ]
        append(row_format.format(*row_values))

    append(header_sep)
    append(
        "Note:\nIn this table, We sum up all collected events in terms of event type.\n"
        "The time of events collected on host are presented as CPU Time, and as GPU Time if on device.\n"
        "ratio = CPU(GPU) Time / Total Time."
        "Events with different types may overlap or inclusion, e.g. Operator includes OperatorInner, so the sum of ratios is not 100%.\n"
        "The time of events in the same type with overlap will not calculate twice, and all time is summed after merged.\n"
        "Example:\n"
        "Thread 1:\n"
        "  Operator: |___________|     |__________|\n"
        "Thread 2:\n"
        "  Operator:   |____________|     |___|\n"
        "After merged:\n"
        "  Result:   |______________|  |__________|\n")
    append('-' * line_length)
    append('')
    append('')

    ###### Print Operator Summary Report ######
    if statistic_data.event_summary.items:
        headers = [
            'Name', 'Calls', 'CPU Total / Avg / Max / Min / Ratio(%)',
            'GPU Total / Avg / Max / Min / Ratio(%)'
        ]
        row_format_list = [""]
        header_sep_list = [""]
        line_length_list = [-SPACING_SIZE]
        name_column_width = 50
        add_column(name_column_width)
        add_column(6)
        add_column(40)
        add_column(40)

        row_format = row_format_list[0]
        header_sep = header_sep_list[0]
        line_length = line_length_list[0]

        # construct table string
        append(add_title(line_length, "Operator Summary"))
        append('Time unit: {}'.format(time_unit))
        append(header_sep)
        append(row_format.format(*headers))
        append(header_sep)
        if thread_sep == True:
            thread_items = statistic_data.event_summary.thread_items
        else:
            thread_items = {
                'All threads merged': statistic_data.event_summary.items
            }
        for thread_id, items in thread_items.items():
            append(add_title(line_length, "Thread: {}".format(thread_id)))
            if sorted_by == SortedKeys.CPUTotal:
                sorted_items = sorted(
                    items.items(), key=lambda x: x[1].cpu_time, reverse=True)
            elif sorted_by == SortedKeys.CPUAvg:
                sorted_items = sorted(
                    items.items(),
                    key=lambda x: x[1].avg_cpu_time,
                    reverse=True)
            elif sorted_by == SortedKeys.CPUMax:
                sorted_items = sorted(
                    items.items(),
                    key=lambda x: x[1].max_cpu_time,
                    reverse=True)
            elif sorted_by == SortedKeys.CPUMin:
                sorted_items = sorted(
                    items.items(), key=lambda x: x[1].min_cpu_time)
            elif sorted_by == SortedKeys.GPUTotal:
                sorted_items = sorted(
                    items.items(), key=lambda x: x[1].gpu_time, reverse=True)
            elif sorted_by == SortedKeys.GPUAvg:
                sorted_items = sorted(
                    items.items(),
                    key=lambda x: x[1].avg_gpu_time,
                    reverse=True)
            elif sorted_by == SortedKeys.GPUMax:
                sorted_items = sorted(
                    items.items(),
                    key=lambda x: x[1].max_gpu_time,
                    reverse=True)
            elif sorted_by == SortedKeys.GPUMin:
                sorted_items = sorted(
                    items.items(), key=lambda x: x[1].min_gpu_time)

            total_cpu_time = 0
            total_gpu_time = 0
            for name, item in sorted_items:
                total_cpu_time += item.cpu_time
                total_gpu_time += item.gpu_time
            for name, item in sorted_items:
                row_values = [
                    name, item.call, '{} / {} / {} / {} / {}'.format(
                        format_time(
                            item.cpu_time, unit=time_unit),
                        format_time(
                            item.avg_cpu_time, unit=time_unit),
                        format_time(
                            item.max_cpu_time, unit=time_unit),
                        format_time(
                            item.min_cpu_time, unit=time_unit),
                        format_ratio(float(item.cpu_time) / total_cpu_time)),
                    '{} / {} / {} / {} / {}'.format(
                        format_time(
                            item.gpu_time, unit=time_unit),
                        format_time(
                            item.avg_gpu_time, unit=time_unit),
                        format_time(
                            item.max_gpu_time, unit=time_unit),
                        format_time(
                            item.min_gpu_time, unit=time_unit),
                        format_ratio(float(item.gpu_time) / total_gpu_time))
                ]
                append(row_format.format(*row_values))
                if op_detail:
                    for innerop_name, innerop_node in item.operator_inners.items(
                    ):
                        row_values = [
                            '  {}'.format(innerop_name), innerop_node.call,
                            '{} / {} / {} / {} / {}'.format(
                                format_time(
                                    innerop_node.cpu_time, unit=time_unit),
                                format_time(
                                    innerop_node.avg_cpu_time, unit=time_unit),
                                format_time(
                                    innerop_node.max_cpu_time, unit=time_unit),
                                format_time(
                                    innerop_node.min_cpu_time, unit=time_unit),
                                format_ratio(
                                    float(innerop_node.cpu_time) /
                                    total_cpu_time)),
                            '{} / {} / {} / {} / {}'.format(
                                format_time(
                                    innerop_node.gpu_time, unit=time_unit),
                                format_time(
                                    innerop_node.avg_gpu_time, unit=time_unit),
                                format_time(
                                    innerop_node.max_gpu_time, unit=time_unit),
                                format_time(
                                    innerop_node.min_gpu_time, unit=time_unit),
                                format_ratio(
                                    float(innerop_node.gpu_time) /
                                    total_gpu_time))
                        ]
                        append(row_format.format(*row_values))
                        for device_node_name, devicenode in innerop_node.devices.items(
                        ):
                            if len(device_node_name) + 4 > name_column_width:
                                device_node_name = device_node_name[:
                                                                    name_column_width
                                                                    - 7]
                                device_node_name += "..."
                            row_values = [
                                '    {}'.format(device_node_name),
                                devicenode.call, '- / - / - / - / -',
                                '{} / {} / {} / {} / {}'.format(
                                    format_time(
                                        devicenode.gpu_time, unit=time_unit),
                                    format_time(
                                        devicenode.avg_gpu_time,
                                        unit=time_unit),
                                    format_time(
                                        devicenode.max_gpu_time,
                                        unit=time_unit),
                                    format_time(
                                        devicenode.min_gpu_time,
                                        unit=time_unit),
                                    format_ratio(
                                        float(devicenode.gpu_time) /
                                        total_gpu_time))
                            ]
                            append(row_format.format(*row_values))
                    for device_node_name, device_node in item.devices.items():
                        if len(device_node_name) + 2 > name_column_width:
                            device_node_name = device_node_name[:
                                                                name_column_width
                                                                - 5]
                            device_node_name += "..."
                        row_values = [
                            '    {}'.format(device_node_name), devicenode.call,
                            '- / - / - / - / -',
                            '{} / {} / {} / {} / {}'.format(
                                format_time(
                                    devicenode.gpu_time, unit=time_unit),
                                format_time(
                                    devicenode.avg_gpu_time, unit=time_unit),
                                format_time(
                                    devicenode.max_gpu_time, unit=time_unit),
                                format_time(
                                    devicenode.min_gpu_time, unit=time_unit),
                                format_ratio(
                                    float(devicenode.gpu_time) /
                                    total_gpu_time))
                        ]
                        append(row_format.format(*row_values))
        append(header_sep)
        append('')
        append('')
    return ''.join(result)