test_bert_prim_cinn.py 5.1 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import unittest

import numpy as np
from bert import Bert, BertPretrainingCriterion, create_pretraining_dataset

import paddle
23
from paddle import fluid
W
WangZhen 已提交
24
from paddle.dataset.common import DATA_HOME, download
25
from paddle.fluid import core
W
WangZhen 已提交
26 27 28 29 30 31 32 33 34

SEED = 2023
BATCH_SIZE = 2

URL = 'https://paddle-ci.gz.bcebos.com/prim_cinn/bert_training_data.npz'
MODULE_NAME = 'test_bert_prim_cinn'
MD5SUM = '71e730ee8d7aa77a215b7e898aa089af'
SAVE_NAME = 'bert_training_data.npz'

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

DY2ST_PRIM_GT = [
    11.144556999206543,
    10.343620300292969,
    10.330279350280762,
    10.276118278503418,
    10.222086906433105,
    10.194628715515137,
    10.14902114868164,
    10.096250534057617,
    10.104615211486816,
    9.985644340515137,
]
DY2ST_CINN_GT = [
    10.649632453918457,
    10.333406448364258,
    10.33541202545166,
    10.260543823242188,
    10.219606399536133,
    10.176884651184082,
    10.124699592590332,
    10.072620391845703,
    10.112163543701172,
    9.969393730163574,
]
60

61
DY2ST_PRIM_CINN_GT = [
62 63 64 65 66 67 68 69 70 71
    10.861940383911133,
    10.350666046142578,
    10.331628799438477,
    10.267815589904785,
    10.22376537322998,
    10.198311805725098,
    10.16231632232666,
    10.10612678527832,
    10.122684478759766,
    10.0067138671875,
72 73
]

74

W
WangZhen 已提交
75 76 77 78 79 80 81 82 83
if core.is_compiled_with_cuda():
    paddle.set_flags({'FLAGS_cudnn_deterministic': True})


def train(to_static, enable_prim, enable_cinn):
    if core.is_compiled_with_cuda():
        paddle.set_device('gpu')
    else:
        paddle.set_device('cpu')
84
    fluid.core._set_prim_all_enabled(enable_prim)
W
WangZhen 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97

    np.random.seed(SEED)
    paddle.seed(SEED)
    # paddle.framework.random._manual_program_seed(SEED)

    train_data_loader = create_pretraining_dataset(
        os.path.join(DATA_HOME, MODULE_NAME, SAVE_NAME),
        20,
        {},
        batch_size=BATCH_SIZE,
        worker_init=None,
    )

98 99
    # Now only apply dy2st for encoder
    bert = Bert(to_static, enable_cinn)
W
WangZhen 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    criterion = BertPretrainingCriterion()

    optimizer = fluid.optimizer.Adam(parameter_list=bert.parameters())

    losses = []
    for step, batch in enumerate(train_data_loader):
        start_time = time.time()
        (
            input_ids,
            segment_ids,
            input_mask,
            masked_lm_positions,
            masked_lm_labels,
            next_sentence_labels,
            masked_lm_scale,
        ) = batch

        prediction_scores, seq_relationship_score = bert(
            input_ids=input_ids,
            token_type_ids=segment_ids,
            attention_mask=input_mask,
            masked_positions=masked_lm_positions,
        )

        loss = criterion(
            prediction_scores,
            seq_relationship_score,
            masked_lm_labels,
            next_sentence_labels,
            masked_lm_scale,
        )

        loss.backward()
        optimizer.minimize(loss)
        bert.clear_gradients()
135
        losses.append(loss.numpy().item())
W
WangZhen 已提交
136 137 138 139 140 141 142 143 144 145

        print(
            "step: {}, loss: {}, batch_cost: {:.5}".format(
                step,
                loss.numpy(),
                time.time() - start_time,
            )
        )
        if step >= 9:
            break
146
    print(losses)
W
WangZhen 已提交
147 148 149 150 151 152 153 154
    return losses


class TestBert(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        download(URL, MODULE_NAME, MD5SUM, SAVE_NAME)

155 156 157 158 159 160 161
    def tearDown(self):
        paddle.set_flags({'FLAGS_deny_cinn_ops': ''})

    @unittest.skipIf(
        not (paddle.is_compiled_with_cinn() and paddle.is_compiled_with_cuda()),
        "paddle is not compiled with CINN and CUDA",
    )
W
WangZhen 已提交
162 163
    def test_prim(self):
        dy2st_prim = train(to_static=True, enable_prim=True, enable_cinn=False)
164
        np.testing.assert_allclose(dy2st_prim, DY2ST_PRIM_GT, rtol=1e-5)
W
WangZhen 已提交
165 166

    @unittest.skipIf(
167 168
        not (paddle.is_compiled_with_cinn() and paddle.is_compiled_with_cuda()),
        "paddle is not compiled with CINN and CUDA",
W
WangZhen 已提交
169 170
    )
    def test_cinn(self):
171
        paddle.set_flags({'FLAGS_deny_cinn_ops': "dropout"})
W
WangZhen 已提交
172
        dy2st_cinn = train(to_static=True, enable_prim=False, enable_cinn=True)
173
        np.testing.assert_allclose(dy2st_cinn, DY2ST_CINN_GT, rtol=1e-5)
W
WangZhen 已提交
174 175

    @unittest.skipIf(
176 177
        not (paddle.is_compiled_with_cinn() and paddle.is_compiled_with_cuda()),
        "paddle is not compiled with CINN and CUDA",
W
WangZhen 已提交
178 179 180 181 182
    )
    def test_prim_cinn(self):
        dy2st_prim_cinn = train(
            to_static=True, enable_prim=True, enable_cinn=True
        )
183 184 185
        np.testing.assert_allclose(
            dy2st_prim_cinn, DY2ST_PRIM_CINN_GT, rtol=1e-5
        )
W
WangZhen 已提交
186 187 188 189


if __name__ == '__main__':
    unittest.main()