recurrent_op_utils.cc 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/rnn/recurrent_op_utils.h"

namespace paddle {
namespace operators {
namespace rnn {

namespace fmw = paddle::framework;

void SegmentInputs(const std::vector<Scope*>& step_scopes,
                   const std::vector<Link>& inlinks, const size_t seq_len,
                   bool infer_shape_mode) {
  PADDLE_ENFORCE(!inlinks.empty(), "no in links are provided.");
  for (size_t i = 0; i < inlinks.size(); ++i) {
    auto input_var = step_scopes[0]->FindVar(inlinks[i].external);
    PADDLE_ENFORCE(input_var != nullptr, "input link [%s] is not in scope.",
                   inlinks[i].external);

    Tensor* input = input_var->GetMutable<Tensor>();
    fmw::DDim dims = input->dims();
    PADDLE_ENFORCE(static_cast<size_t>(dims[0]) == seq_len,
                   "all the inlinks must have same length");
    fmw::DDim step_dims = slice_ddim(dims, 1, dims.size());
    for (size_t j = 0; j < seq_len; j++) {
      Tensor* step_input =
          step_scopes[j]->NewVar(inlinks[i].internal)->GetMutable<Tensor>();
      if (!infer_shape_mode) {
        *step_input = input->Slice<float>(j, j + 1);
      }
      step_input->Resize(step_dims);
    }
  }
}

void ConcatOutputs(const std::vector<Scope*>& step_scopes,
                   const std::vector<Link>& outlinks, const size_t seq_len,
                   bool infer_shape_mode) {
  for (size_t i = 0; i < outlinks.size(); i++) {
    auto output_var = step_scopes[0]->FindVar(outlinks[i].external);
    PADDLE_ENFORCE(output_var != nullptr, "output link [%s] is not in scope.",
                   outlinks[i].external);
    Tensor* output = output_var->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
56

57
    if (infer_shape_mode) {
Y
Yan Chunwei 已提交
58 59 60 61 62
      auto step_scope_var = step_scopes[0]->FindVar(outlinks[i].internal);
      PADDLE_ENFORCE(step_scope_var != nullptr, "%s not in scope",
                     outlinks[i].internal);
      fmw::DDim step_dims =
          step_scope_var->template GetMutable<Tensor>()->dims();
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
      std::vector<int> dims_vec = vectorize(step_dims);
      dims_vec.insert(dims_vec.begin(), seq_len);
      output->Resize(fmw::make_ddim(dims_vec));
    } else {
      output->mutable_data<float>(platform::CPUPlace());
      for (size_t j = 0; j < seq_len; j++) {
        Tensor* step_output =
            step_scopes[j]->FindVar(outlinks[i].internal)->GetMutable<Tensor>();
        // TODO(luotao02) data type and platform::DeviceContext() should set
        // correctly
        (output->Slice<float>(j, j + 1))
            .CopyFrom<float>(*step_output, platform::CPUPlace());
      }
    }
  }
}

void LinkMemories(const std::vector<Scope*>& scopes,
                  const std::vector<rnn::MemoryAttr>& memories,
                  const size_t step_id, const int offset,
                  bool infer_shape_mode) {
Y
Yan Chunwei 已提交
84 85 86 87 88 89 90 91 92
  PADDLE_ENFORCE_LT(step_id, scopes.size(),
                    "step [%d] is out of range of step scopes' size [%d]",
                    step_id, scopes.size());
  PADDLE_ENFORCE_GE(static_cast<int>(step_id) + offset, 0,
                    "offset [%d] must be large than -[%d]", offset, step_id);
  PADDLE_ENFORCE_LT(
      step_id + offset, scopes.size(),
      "offset [%d] is out of range, it must be less than (%d - %d)", offset,
      scopes.size(), step_id);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  auto scope = scopes[step_id];
  auto linked_scope = scopes[step_id + offset];
  for (auto& attr : memories) {
    auto mem = scope->FindVar(attr.pre_var)->GetMutable<Tensor>();
    auto linked_mem = linked_scope->FindVar(attr.var)->GetMutable<Tensor>();
    if (infer_shape_mode) {
      mem->Resize(linked_mem->dims());
    } else {
      mem->ShareDataWith<float>(*linked_mem);
    }
  }
}

void InitArgument(const ArgumentName& name, Argument* arg,
                  const OperatorBase& op) {
  arg->step_net = op.Input(name.step_net);
  arg->step_scopes = op.Output(name.step_scopes);

  auto inlinks = op.Inputs(name.inlinks);
  auto inlink_alias = op.GetAttr<std::vector<std::string>>(name.inlink_alias);
  PADDLE_ENFORCE(inlinks.size() == inlink_alias.size(),
                 "the size of inlinks and inlink_alias don't match:%d,%d",
                 inlinks.size(), inlink_alias.size());
  for (size_t i = 0; i < inlinks.size(); ++i) {
    rnn::Link link;
    link.external = inlinks[i];
    link.internal = inlink_alias[i];
    (arg->inlinks).push_back(link);
  }

  auto outlinks = op.Outputs(name.outlinks);
  auto outlink_alias = op.GetAttr<std::vector<std::string>>(name.outlink_alias);
  PADDLE_ENFORCE(outlinks.size() == outlink_alias.size(),
                 "the size of outlinks and outlink_alias don't match:%d,%d",
                 outlinks.size(), outlink_alias.size());
  for (size_t i = 0; i < outlinks.size(); ++i) {
    rnn::Link link;
    link.external = outlinks[i];
    link.internal = outlink_alias[i];
    (arg->outlinks).push_back(link);
  }

  auto boot_memories = op.Inputs(name.boot_memories);

  // attributes
  auto memories = op.GetAttr<std::vector<std::string>>(name.memories);
  auto pre_memories = op.GetAttr<std::vector<std::string>>(name.pre_memories);

  PADDLE_ENFORCE(memories.size() == boot_memories.size(),
                 "the size of memories, boot_memories don't match:%d,%d",
                 memories.size(), boot_memories.size());
  PADDLE_ENFORCE(pre_memories.size() == boot_memories.size(),
                 "the size of pre_memories, boot_memories don't match:%d,%d",
                 pre_memories.size(), boot_memories.size());
  PADDLE_ENFORCE(memories.size() > 0, "more than 1 memories should be set");

  for (size_t i = 0; i < memories.size(); ++i) {
    rnn::MemoryAttr mem_attr;
    mem_attr.var = memories[i];
    mem_attr.pre_var = pre_memories[i];
    mem_attr.boot_var = boot_memories[i];
    (arg->memories).push_back(mem_attr);
  }
}

}  // namespace rnn
}  // namespace operators
}  // namespace paddle