quantize_mkldnn_op.cc 6.0 KB
Newer Older
X
xiaoli.liu@intel.com 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/quantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaoli.liu@intel.com 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
X
xiaoli.liu@intel.com 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;

template <typename T>
class QuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_data = ctx.Attr<float>("Scale");
39 40
    auto scale_shift = ctx.Attr<float>("Shift");
    bool with_shift = scale_shift != 0.0f;
X
xiaoli.liu@intel.com 已提交
41
    auto* output = ctx.Output<Tensor>("Output");
42 43 44 45 46 47 48 49 50 51 52 53

    PADDLE_ENFORCE_NE(
        scale_data, 0.0f,
        platform::errors::InvalidArgument("Quantization scale cannot be 0.0"));
    PADDLE_ENFORCE_GE(scale_shift, 0,
                      platform::errors::Unimplemented(
                          "Quantization shift must be nonnegative."));
    PADDLE_ENFORCE_LE(
        scale_shift, 255,
        platform::errors::Unimplemented(
            "Quantization shift must be less than or equal to 255."));

X
xiaoli.liu@intel.com 已提交
54 55 56 57 58
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

    std::vector<primitive> pipeline;
A
Adam 已提交
59 60
    auto src_tz = paddle::framework::vectorize<int64_t>(input->dims());
    auto dst_tz = paddle::framework::vectorize<int64_t>(output->dims());
X
xiaoli.liu@intel.com 已提交
61 62 63

    const T* input_data = input->data<T>();

64
    bool is_negative_input = ctx.Attr<bool>("is_negative_input");
65
    bool bfloat16 = ctx.Attr<bool>("bfloat16");
66 67 68 69

    std::string key = platform::CreateKey(
        platform::ThreadIDasStr(), src_tz, scale_data, scale_shift,
        is_negative_input, ctx.OutputName("Output"));
70 71 72
    const std::string key_prim = key + "@r";
    const std::string key_src_mem = key + "@s";
    const std::string key_dst_mem = key + "@d";
73 74

    std::shared_ptr<mkldnn::memory> src_memory;
X
xiaoli.liu@intel.com 已提交
75
    std::shared_ptr<mkldnn::memory> dst_memory;
76 77 78 79
    std::shared_ptr<reorder> reorder_p;
    reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));

    if (reorder_p == nullptr) {
80 81 82
      std::string out_layout = ctx.Attr<std::string>("output_format");
      MKLDNNMemoryFormat out_format =
          platform::data_format_to_memory_format(out_layout);
83 84 85 86
      mkldnn::primitive_attr attri;
      int mask = 0;
      attri.set_output_scales(mask, {scale_data});

87 88 89 90 91 92 93 94 95
      if (with_shift) {
        mkldnn::post_ops post_operations;
        post_operations.append_sum();
        attri.set_post_ops(post_operations);
        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
        // memset casts scale_shift to unsigned char (uint8_t) internally
        std::memset(output_data, scale_shift, output->numel());
      }

96 97
      auto src_md = platform::MKLDNNMemDesc({src_tz}, memory::data_type::f32,
                                            input->format());
A
Adam 已提交
98 99
      src_memory = std::make_shared<mkldnn::memory>(
          src_md, engine, to_void_cast<T>(input_data));
100

A
Adam 已提交
101
      std::shared_ptr<mkldnn::memory::desc> dst_md;
102 103 104
      if (bfloat16) {
        platform::SetDstMemoryQuantized<paddle::platform::bfloat16>(
            ctx, output, dst_tz, engine, dst_md, dst_memory, out_format);
105
      } else if (is_negative_input && !with_shift) {
106
        platform::SetDstMemoryQuantized<int8_t>(ctx, output, dst_tz, engine,
107
                                                dst_md, dst_memory, out_format);
108
      } else {
109 110
        platform::SetDstMemoryQuantized<uint8_t>(
            ctx, output, dst_tz, engine, dst_md, dst_memory, out_format);
111 112
      }
      auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
A
Adam 已提交
113 114
          new reorder::primitive_desc(*src_memory, *dst_memory, attri));
      reorder_p = std::shared_ptr<reorder>(new reorder(*reorder_pd));
115 116 117 118

      dev_ctx.SetBlob(key_prim, reorder_p);
      dev_ctx.SetBlob(key_src_mem, src_memory);
      dev_ctx.SetBlob(key_dst_mem, dst_memory);
X
xiaoli.liu@intel.com 已提交
119
    } else {
120 121 122 123 124 125 126
      src_memory = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(key_src_mem));
      src_memory->set_data_handle(to_void_cast<T>(input_data));

      dst_memory = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(key_dst_mem));
      auto place = ctx.GetPlace();
127 128 129 130

      if (bfloat16) {
        dst_memory->set_data_handle(
            output->mutable_data<paddle::platform::bfloat16>(place));
131 132 133 134
      } else if (with_shift || !is_negative_input) {
        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
        if (with_shift) std::memset(output_data, scale_shift, output->numel());
        dst_memory->set_data_handle(output_data);
135
      } else {
136 137
        dst_memory->set_data_handle(
            output->mutable_data<int8_t>(ctx.GetPlace()));
138
      }
X
xiaoli.liu@intel.com 已提交
139
    }
140

A
Adam 已提交
141
    mkldnn::stream astream(engine);
142 143 144 145 146 147
    {
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder_p->execute(astream, *src_memory, *dst_memory);
      astream.wait();
    }
A
Adam 已提交
148

X
xiaoli.liu@intel.com 已提交
149 150 151 152 153 154 155 156 157 158
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory));
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(quantize, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::QuantOpKernel<float>);