mean_iou_op.h 4.4 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
17

W
whs 已提交
18 19 20 21 22 23
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

24 25 26
template <typename T,
          int D,
          int MajorType = Eigen::RowMajor,
W
whs 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

template <typename T>
class MeanIoUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    // get input and output tensor
    auto* predictions = ctx.Input<Tensor>("Predictions");
    auto* labels = ctx.Input<Tensor>("Labels");
    auto* out_mean_iou = ctx.Output<Tensor>("OutMeanIou");
    auto* out_wrong = ctx.Output<Tensor>("OutWrong");
    auto* out_correct = ctx.Output<Tensor>("OutCorrect");
    int num_classes = static_cast<int>(ctx.Attr<int>("num_classes"));

    // get data ptr
    const T* predictions_data = predictions->data<T>();
    const T* labels_data = labels->data<T>();
    float* out_mean_iou_data =
        out_mean_iou->mutable_data<float>(ctx.GetPlace());
    int* out_wrong_data = out_wrong->mutable_data<int>(ctx.GetPlace());
    int* out_correct_data = out_correct->mutable_data<int>(ctx.GetPlace());

    // get eigen tensor
    auto out_mean_iou_t = EigenTensor<float, 1>::From(*out_mean_iou);
    auto out_wrong_t = EigenTensor<int, 1>::From(*out_wrong);
    auto out_correct_t = EigenTensor<int, 1>::From(*out_correct);

    // Tmp tensor
    Tensor denominator;
    Tensor valid_count;
    Tensor iou_sum;

    // get data ptr of tmp tensor
    int* denominator_data = denominator.mutable_data<int>(
        {static_cast<int64_t>(num_classes)}, ctx.GetPlace());
    int* valid_count_data = valid_count.mutable_data<int>({1}, ctx.GetPlace());
    float* iou_sum_data = iou_sum.mutable_data<float>({1}, ctx.GetPlace());

    // get eigen tensor of tmp tensor
    auto denominator_t = EigenTensor<int, 1>::From(denominator);
    auto valid_count_t = EigenTensor<int, 1>::From(valid_count);
    auto iou_sum_t = EigenTensor<float, 1>::From(iou_sum);

    // init out_wrong, out_correct and out_mean_iou
    out_wrong_t = out_wrong_t.constant(0);
    out_correct_t = out_correct_t.constant(0);
    out_mean_iou_t = out_mean_iou_t.constant(0);

    // collect pre wrong, correct and mean_iou
    auto in_mean_ious = ctx.MultiInput<Tensor>("InMeanIou");
    for (size_t i = 0; i < in_mean_ious.size(); ++i) {
      out_mean_iou_t.device(place) +=
          EigenTensor<float, 1>::From(*in_mean_ious[i]);
    }
    auto in_wrongs = ctx.MultiInput<Tensor>("InWrongs");
    for (size_t i = 0; i < in_wrongs.size(); ++i) {
      out_wrong_t.device(place) += EigenTensor<int, 1>::From(*in_wrongs[i]);
    }
    auto in_corrects = ctx.MultiInput<Tensor>("InCorrects");
    for (size_t i = 0; i < in_corrects.size(); ++i) {
      out_correct_t.device(place) += EigenTensor<int, 1>::From(*in_corrects[i]);
    }

    // compute
    for (int64_t i = 0; i < predictions->numel(); ++i) {
      if (predictions_data[i] == labels_data[i]) {
        out_correct_data[predictions_data[i]] += 1;
      } else {
        out_wrong_data[labels_data[i]] += 1;
        out_wrong_data[predictions_data[i]] += 1;
      }
    }

    denominator_t = out_wrong_t + out_correct_t;
    valid_count_t =
        (denominator_t > denominator_t.constant(0.0f)).cast<int>().sum();

    for (int i = 0; i < num_classes; ++i) {
      if (denominator_data[i] == 0) {
        denominator_data[i] = 1;
      }
    }

    iou_sum_t =
        (out_correct_t.cast<float>() / denominator_t.cast<float>()).sum();
    out_mean_iou_data[0] += (iou_sum_data[0] / valid_count_data[0]);
  }
};

}  // namespace operators
}  // namespace paddle