affine_grid_op.cc 10.7 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/affine_grid_op.h"
16

17
#include <memory>
W
whs 已提交
18
#include <string>
19
#include <vector>
20

W
whs 已提交
21
#include "paddle/fluid/framework/op_registry.h"
W
whs 已提交
22
#include "paddle/fluid/framework/op_version_registry.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
W
whs 已提交
24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct Linspace<paddle::platform::CPUDeviceContext, T> {
32 33 34 35
  void operator()(T start,
                  T end,
                  int count,
                  bool align_corners,
36
                  framework::Tensor* numbers,
37 38
                  const framework::ExecutionContext& ctx) {
    T* number_data = numbers->mutable_data<T>({count}, platform::CPUPlace());
W
whs 已提交
39
    T slice = (end - start) / (T)(count - 1);
40 41 42 43
    if (!align_corners) {
      slice = (end - start) / (T)count;
      start *= (T)(count - 1) / (T)count;
    }
W
whs 已提交
44 45 46 47 48 49 50 51 52 53
    for (int i = 0; i < count; ++i) {
      number_data[i] = start + (T)i * slice;
    }
  }
};

class AffineGridOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
54 55
    PADDLE_ENFORCE_EQ(ctx->HasInput("Theta"),
                      true,
56 57
                      platform::errors::NotFound(
                          "The input 'Theta' of AffineGridOp is not found."));
58 59
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"),
                      true,
60 61
                      platform::errors::NotFound(
                          "The output 'Output' of AffineGridOp is not found."));
W
whs 已提交
62
    auto theta_dims = ctx->GetInputDim("Theta");
63
    PADDLE_ENFORCE_EQ(
64 65
        theta_dims.size(),
        3,
66 67 68
        platform::errors::InvalidArgument(
            "The input Theta's dimensions size should be 3. But received "
            "Theta's demensions size=[%d],  Theta's dimensions=[%s].",
69 70
            theta_dims.size(),
            theta_dims));
W
whs 已提交
71 72 73

    auto output_shape = ctx->Attrs().Get<std::vector<int>>("output_shape");
    if (output_shape.size() == 0) {
74
      PADDLE_ENFORCE_EQ(
75 76
          ctx->HasInput("OutputShape"),
          true,
77 78 79
          platform::errors::NotFound(
              "The input 'OutputShape' of AffineGridOp should not be null if "
              "'output_shape' is not configured."));
W
whs 已提交
80
      auto output_shape_dims = ctx->GetInputDim("OutputShape");
81
      PADDLE_ENFORCE_EQ(
82 83
          output_shape_dims.size(),
          1,
84 85 86 87
          platform::errors::InvalidArgument(
              "The dimesions size of input OutputShape in AffineGridOp should "
              "be 1. But received OutputShape's  dimesions size=[%d], "
              "OutputShape's  dimesions=[%s]",
88 89
              output_shape_dims.size(),
              output_shape_dims));
W
whs 已提交
90
    } else {
91
      PADDLE_ENFORCE_EQ(
92 93
          output_shape.size(),
          4,
94 95 96 97
          platform::errors::InvalidArgument(
              "The size of attribute 'output_shape' in AffineGridOp should be "
              "4. But received output_shape's size=[%d].",
              output_shape.size()));
W
whs 已提交
98 99
    }

100
    PADDLE_ENFORCE_EQ(
101 102
        theta_dims[1],
        2,
103 104 105
        platform::errors::InvalidArgument(
            "The second dimesion of input 'theta' in AffineGridOp should be 2. "
            "But received second dimesion=[%d], dimesions=[%s]",
106 107
            theta_dims[1],
            theta_dims));
108
    PADDLE_ENFORCE_EQ(
109 110
        theta_dims[2],
        3,
111 112 113
        platform::errors::InvalidArgument(
            "The third dimesion of input 'theta' in AffineGridOp should be 3. "
            "But received third dimesion=[%d], dimesions=[%s]",
114 115
            theta_dims[2],
            theta_dims));
116

W
whs 已提交
117
    // N * H * W * 2
118
    ctx->SetOutputDim("Output", phi::make_ddim({theta_dims[0], -1, -1, 2}));
W
whs 已提交
119 120 121 122 123 124 125
    ctx->ShareLoD("Theta", "Output");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
126
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
whs 已提交
127 128 129 130
    if (platform::CanCUDNNBeUsed(ctx)) {
      library = framework::LibraryType::kCUDNN;
    }
#endif
131
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Theta");
132 133
    return framework::OpKernelType(
        data_type, ctx.GetPlace(), framework::DataLayout::kAnyLayout, library);
W
whs 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  }
};

class AffineGridOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Theta",
        "(Tensor) A batch of affine transform parameters with shape [N, 2, 3]. "
        "It is used to transform coordinate (x_0, y_0) to coordinate (x_1, "
        "y_1).");
    AddInput("OutputShape",
             "(Tensor) The shape of target image with format [N, C, H, W].")
        .AsDispensable();
    AddOutput("Output", "(Tensor) Output Tensor with shape [N, H, W, 2].");
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
152 153
        .SetDefault(true)
        .AsExtra();
154 155
    AddAttr<bool>("align_corners",
                  "(bool, default false) Whether to align the corners of input"
156
                  "and output.")
157
        .SetDefault(true);
W
whs 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    AddAttr<std::vector<int>>(
        "output_shape",
        "The target output image shape with format [N, C, H, W].")
        .SetDefault(std::vector<int>());

    AddComment(R"DOC(
    It generates a grid of (x,y) coordinates using the parameters of the
    affine transformation that correspond to a set of points where the input
    feature map should be sampled to produce the transformed output feature map.

    Given:
        Theta = [[[x_11, x_12, x_13]
                  [x_14, x_15, x_16]]
                 [[x_21, x_22, x_23]
                  [x_24, x_25, x_26]]]
    
        OutputShape = [2, 3, 5, 5]

    Step 1:

        Generate relative coordinates according to OutputShape.
        The values of relative coordinates are in the interval between -1 and 1.
        The shape of the relative coordinates is [2, H, W] as below:
    
        C = [[[-1.  -1.  -1.  -1.  -1. ]
              [-0.5 -0.5 -0.5 -0.5 -0.5]
              [ 0.   0.   0.   0.   0. ]
              [ 0.5  0.5  0.5  0.5  0.5]
              [ 1.   1.   1.   1.   1. ]] 
             [[-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]]]
192 193
        C[0] is the coordinates in height axis and  C[1] is the coordinates in
        width axis.
W
whs 已提交
194 195
    
    Step2:
196 197
        Tanspose and reshape C to shape [H * W, 2] and append ones to last
        dimension. The we get:
W
whs 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        C_ = [[-1.  -1.   1. ]
              [-0.5 -1.   1. ]
              [ 0.  -1.   1. ]
              [ 0.5 -1.   1. ]
              [ 1.  -1.   1. ]
              [-1.  -0.5  1. ]
              [-0.5 -0.5  1. ]
              [ 0.  -0.5  1. ]
              [ 0.5 -0.5  1. ]
              [ 1.  -0.5  1. ]
              [-1.   0.   1. ]
              [-0.5  0.   1. ]
              [ 0.   0.   1. ]
              [ 0.5  0.   1. ]
              [ 1.   0.   1. ]
              [-1.   0.5  1. ]
              [-0.5  0.5  1. ]
              [ 0.   0.5  1. ]
              [ 0.5  0.5  1. ]
              [ 1.   0.5  1. ]
              [-1.   1.   1. ]
              [-0.5  1.   1. ]
              [ 0.   1.   1. ]
              [ 0.5  1.   1. ]
              [ 1.   1.   1. ]]
    Step3:
        Compute output by equation $$Output[i] = C_ * Theta[i]^T$$
    )DOC");
  }
};

class AffineGridOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    if (ctx->HasOutput(framework::GradVarName("Theta"))) {
234 235 236
      auto output_dims = ctx->GetInputDim(framework::GradVarName("Output"));
      ctx->SetOutputDim(framework::GradVarName("Theta"),
                        {output_dims[0], 2, 3});
W
whs 已提交
237 238 239 240 241 242 243
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
244
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
whs 已提交
245 246 247 248
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
    }
#endif
249 250 251
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Output")),
                                   ctx.GetPlace(),
252 253
                                   framework::DataLayout::kAnyLayout,
                                   library_);
W
whs 已提交
254 255 256
  }
};

H
hong 已提交
257 258
template <typename T>
class AffineGridGradMaker : public framework::SingleGradOpMaker<T> {
W
whs 已提交
259
 public:
H
hong 已提交
260
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
W
whs 已提交
261 262

 protected:
263
  void Apply(GradOpPtr<T> op) const override {
W
whs 已提交
264
    op->SetType("affine_grid_grad");
H
hong 已提交
265 266
    op->SetInput("OutputShape", this->Input("OutputShape"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
W
whs 已提交
267

H
hong 已提交
268
    op->SetAttrMap(this->Attrs());
W
whs 已提交
269

H
hong 已提交
270
    op->SetOutput(framework::GradVarName("Theta"), this->InputGrad("Theta"));
W
whs 已提交
271 272 273 274 275 276 277
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
278 279 280
REGISTER_OPERATOR(affine_grid,
                  ops::AffineGridOp,
                  ops::AffineGridOpMaker,
H
hong 已提交
281 282
                  ops::AffineGridGradMaker<paddle::framework::OpDesc>,
                  ops::AffineGridGradMaker<paddle::imperative::OpBase>);
W
whs 已提交
283 284 285 286 287 288 289 290 291 292
REGISTER_OPERATOR(affine_grid_grad, ops::AffineGridOpGrad);

REGISTER_OP_CPU_KERNEL(
    affine_grid,
    ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    affine_grid_grad,
    ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, double>);
W
whs 已提交
293 294 295 296 297 298 299

REGISTER_OP_VERSION(affine_grid)
    .AddCheckpoint(
        R"ROC(
               Compatible upgrade of affine_grid, add a new attribute [align_corners])ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "align_corners",
300 301
            "Whether to align the corners of input and output.",
            true));