operator_kernel_configs.h 4.7 KB
Newer Older
X
polish  
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
18
#include <mutex>
X
polish  
Xin Pan 已提交
19 20
#include <unordered_map>
#include <vector>
21

22
#include "glog/logging.h"
X
polish  
Xin Pan 已提交
23 24 25 26

namespace paddle {
namespace framework {

27
// thread-safe.
X
polish  
Xin Pan 已提交
28 29 30 31 32 33
template <typename TAlgorithm>
class AlgorithmsCache {
 public:
  AlgorithmsCache() : search_times_(0) { hash_.clear(); }
  // Caches the best algorithm for a given
  // combination of tensor dimensions & compute data type.
34 35 36 37 38
  // cudnn_dtype set for different data type
  TAlgorithm GetAlgorithm(const std::vector<int64_t>& dims1,
                          const std::vector<int64_t>& dims2,
                          const std::vector<int>& strides,
                          const std::vector<int>& paddings,
39 40
                          const std::vector<int>& dilations,
                          int algorithmFlags,
41 42
                          int64_t cudnn_dtype,
                          std::function<TAlgorithm()> gen_func);
X
polish  
Xin Pan 已提交
43

44 45 46
  TAlgorithm GetAlgorithm(int64_t area,
                          int search_times,
                          int algorithmFlags,
X
polish  
Xin Pan 已提交
47 48 49 50 51
                          std::function<TAlgorithm()> gen_func);

 private:
  std::unordered_map<int64_t, TAlgorithm> hash_;
  int search_times_;
52
  std::mutex cache_mutex;
X
polish  
Xin Pan 已提交
53 54 55 56
};

template <typename TAlgorithm>
TAlgorithm framework::AlgorithmsCache<TAlgorithm>::GetAlgorithm(
57 58 59 60 61 62 63
    const std::vector<int64_t>& dims1,
    const std::vector<int64_t>& dims2,
    const std::vector<int>& strides,
    const std::vector<int>& paddings,
    const std::vector<int>& dilations,
    int algorithmFlags,
    int64_t cudnn_dtype,
X
polish  
Xin Pan 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    std::function<TAlgorithm()> gen_func) {
  int64_t seed = 0;
  // Hash all of the inputs, use to try and look up a previously
  // discovered algorithm, or fall back to generating a new one.
  std::hash<int64_t> hashFn;
  // do hash like boost
  // https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x
  for (const auto num : dims1) {
    seed ^= hashFn(num) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
  }

  for (const auto num : dims2) {
    seed ^= hashFn(num) + 0x9e3779b9 + (seed << 6) + (seed >> 2) + 1;
  }

  for (const auto num : strides) {
    seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
            (seed >> 2) + 2;
  }

  for (const auto num : paddings) {
    seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
            (seed >> 2) + 3;
  }

  for (const auto num : dilations) {
    seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
            (seed >> 2) + 4;
  }

  seed ^= hashFn(static_cast<int64_t>(algorithmFlags)) + 0x9e3779b9 +
          (seed << 6) + (seed >> 2) + 5;

97 98 99
  seed ^= hashFn(static_cast<int64_t>(cudnn_dtype)) + 0x9e3779b9 + (seed << 6) +
          (seed >> 2) + 6;

100 101
  VLOG(10) << "seed:" << seed << ", hash_.size:" << hash_.size();

X
polish  
Xin Pan 已提交
102 103
  if (seed == 0) return gen_func();

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  TAlgorithm ret;
  auto it = hash_.end();
  bool have_found = false;
  {
    std::lock_guard<std::mutex> lock(cache_mutex);
    it = hash_.find(seed);

    if (it != hash_.end()) {
      ret = it->second;
      have_found = true;
    }
  }

  if (!have_found) {
    ret = gen_func();
    std::lock_guard<std::mutex> lock(cache_mutex);
    hash_[seed] = ret;
X
polish  
Xin Pan 已提交
121
  }
122 123

  return ret;
X
polish  
Xin Pan 已提交
124 125 126 127
}

template <typename TAlgorithm>
TAlgorithm AlgorithmsCache<TAlgorithm>::GetAlgorithm(
128 129 130
    int64_t area,
    int search_times,
    int algorithmFlags,
X
polish  
Xin Pan 已提交
131
    std::function<TAlgorithm()> gen_func) {
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  auto it = hash_.end();
  {
    std::lock_guard<std::mutex> lock(cache_mutex);
    it = hash_.find(area);

    if (it != hash_.end()) {
      return it->second;
    }
  }

  bool gene_flag = false;

  {
    std::lock_guard<std::mutex> lock(cache_mutex);
    gene_flag = (search_times_ < search_times);
X
polish  
Xin Pan 已提交
147
  }
148 149 150 151 152

  TAlgorithm algo{};
  if (gene_flag) {
    algo = gen_func();
    std::lock_guard<std::mutex> lock(cache_mutex);
X
polish  
Xin Pan 已提交
153 154 155 156
    hash_[area] = algo;
    ++search_times_;
    return algo;
  }
157

X
polish  
Xin Pan 已提交
158
  int64_t min = static_cast<uint64_t>(INT_MAX);
159 160 161 162 163 164 165
  {
    std::lock_guard<std::mutex> lock(cache_mutex);
    for (const auto& m : hash_) {
      if (m.first < min) {
        min = m.first;
        algo = m.second;
      }
X
polish  
Xin Pan 已提交
166 167 168 169 170 171 172
    }
  }
  return algo;
}

}  // namespace framework
}  // namespace paddle