matmul_utils.h 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/backends/onednn/onednn_reuse.h"

namespace phi {
namespace funcs {

DDim RowMatrixDimsFromVector(const DDim& x_dim);
DDim ColumnMatrixDimsFromVector(const DDim& y_dim);

std::vector<int64_t> TransposeAxis(const std::vector<int64_t>& x,
                                   const std::vector<int>& axis);

std::vector<int64_t> GetInputStrides(const std::string input_name,
                                     const DDim& input_dims,
                                     const bool transpose_input,
                                     std::vector<int> shape,
                                     std::vector<int> axis);

template <typename XT, typename YT, typename OT>
class MatmulOneDNNHandler : public OneDNNHandlerNoCachingT<XT, dnnl::matmul> {
 public:
  MatmulOneDNNHandler(const OneDNNContext& dev_ctx,
                      const std::vector<int64_t>& x_org_dims,
                      const std::vector<int64_t>& y_org_dims,
                      bool trans_x,
                      bool trans_y)
      : OneDNNHandlerNoCachingT<XT, dnnl::matmul>(dev_ctx.GetEngine(),
                                                  dev_ctx.GetPlace()) {
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (trans_x) {
      x_strides.insert(x_strides.end(), {M * K, 1, M});
    } else {
      x_strides.insert(x_strides.end(), {M * K, K, 1});
    }

    if (trans_y) {
      y_strides.insert(y_strides.end(), {N * K, 1, K});
    } else {
      y_strides.insert(y_strides.end(), {N * K, N, 1});
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      y_strides[i] = y_dims[i + 1] * y_strides[i + 1];

      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

    auto x_md = memory::desc(x_dims, OneDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, OneDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_ddims, OneDNNGetDataType<OT>(), out_strides);

96
    this->AcquireForwardPrimitiveDescriptor(x_md, y_md, out_md);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const DenseTensor* input) {
    const YT* input_data = input->data<YT>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                            to_void_cast<YT>(input_data));
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemory(const OneDNNContext& dev_ctx,
                                                 DenseTensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence DenseTensor size is bigger that
    // dst memory primitive size. So would we request less memory that is there
    // and it triggers an assertion.  So as there is no 'any' format here we can
    // leave default size of DenseTensor as computed in ComputeInferShape
    OT* ptr = dev_ctx.template Alloc<OT>(output);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
  }
};

template <typename T>
inline void ExecuteMul(const OneDNNContext& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       const std::vector<int64_t>& x_dims,
                       const std::vector<int64_t>& y_dims,
                       bool trans_x,
                       bool trans_y,
                       DenseTensor* out) {
  MatmulOneDNNHandler<T, T, T> handler(
      dev_ctx, x_dims, y_dims, trans_x, trans_y);

  const auto src_memory_p = handler.AcquireSrcMemory(&x);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y);
  const auto dst_memory_p = handler.AcquireDstMemory(dev_ctx, out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto& astream = OneDNNContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  // This kernel is flattening dims so then we need to unflattened version
  // that should be set in out reshape require plain layout, but
  // MatmulV2MKLDNNHanlder enforces one so it should work
  out->set_mem_desc(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims())));
}

template <typename T, typename T_out>
inline void ExecuteMatmul(const OneDNNContext& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          const std::vector<int64_t>& x_dims,
                          const std::vector<int64_t>& y_dims,
                          bool trans_x,
                          bool trans_y,
                          DenseTensor* out) {
  MatmulOneDNNHandler<T, T, T_out> handler(
      dev_ctx, x_dims, y_dims, trans_x, trans_y);

  const auto src_memory_p = handler.AcquireSrcMemory(&x);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y);
  const auto dst_memory_p = handler.AcquireDstMemory(dev_ctx, out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto& astream = OneDNNContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  out->set_mem_desc(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims())));
}

}  // namespace funcs
}  // namespace phi