api_base.py 38.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

17
PREFIX_TENSOR_NAME = 'input_'
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
34
        #     out_size_expr : [], expression for getting size of vector<Tensor>
35
        self.inputs, self.attrs, self.outputs, self.optional_vars = self.parse_args(
36 37 38 39 40 41 42
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
43 44 45
            if 'infer_meta' in api_item_yaml:
                self.infer_meta = self.parse_infer_meta(api_item_yaml[
                    'infer_meta'])
46 47 48 49
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.support_selected_rows_kernel = False if len(self.kernel[
                'func']) == 1 else True
            self.data_transform = self.parse_data_transform(api_item_yaml)
50 51
            self.inplace_map, self.view_map = self.parse_inplace_and_view(
                api_item_yaml)
52 53 54 55

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

56 57 58
    def get_api_func_name(self):
        return self.api

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
            "const Tensor&": "Tensor&",
            "const std::vector<Tensor>&": "std::vector<Tensor>&"
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
                input_args.append(inplace_type_map[self.inputs['input_info'][
                    name]] + ' ' + name)
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
            declare_args.append(self.attrs['attr_info'][name][0] + ' ' + name +
                                default_value)
82

83 84 85 86 87 88 89 90
        return ", ".join(declare_args)

    def get_define_args(self, inplace_flag=False):
        define_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            define_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(define_args)
91

92
    def parse_args(self, api_name, api_item_yaml):
93 94 95 96 97
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
98
        inputs, attrs = self.parse_input_and_attr(
99
            api_name, api_item_yaml['args'], optional_vars)
100
        output_type_list, output_names, out_size_expr = self.parse_output(
101 102 103 104
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
105 106
            'out_size_expr': out_size_expr
        }, optional_vars
107

108
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
109 110 111 112 113 114 115
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
116 117 118 119
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
120
        attr_types_map = {
121
            'IntArray': 'const IntArray&',
122
            'Scalar': 'const Scalar&',
123 124 125 126
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
127
            'int': 'int',
128 129
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
130 131 132 133 134
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
            'double': 'double',
            'bool': 'bool',
135
            'str': 'const std::string&',
136
            'Place': 'const Place&',
137 138
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
139 140
            'int64_t[]': 'const std::vector<int64_t>&',
            'int[]': 'const std::vector<int>&'
141 142
        }
        optional_types_trans = {
H
hong 已提交
143
            'Tensor': 'paddle::optional<const Tensor&>',
144 145
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
146 147
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
148 149 150
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
151
            'Place': 'paddle::optional<const Place&>',
152
            'DataLayout': 'paddle::optional<DataLayout>',
153
            'DataType': 'paddle::optional<DataType>'
154 155
        }

156 157
        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
158
            type_and_name = item.split(' ')
159 160
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
161 162 163
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
164 165 166 167 168
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

169 170 171
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

172 173 174 175 176 177 178 179
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
180 181 182
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
183 184 185 186 187 188 189 190
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

191 192 193
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

194 195 196 197 198
                    default_value_str = "" if default_value is None else '=' + default_value
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

199
        return inputs, attrs
200 201 202

    def parse_output(self, api_name, output_config):
        def parse_output_item(output_item):
Z
zyfncg 已提交
203 204 205 206
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
207 208 209 210 211 212 213 214 215 216 217 218 219 220
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
                output_item)
            assert result is not None, f"{api_name} : the output config parse error."
            out_type = result.group('out_type')
            assert out_type in output_type_map, \
                f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
                  but now is {out_type}."

            out_name = 'out' if result.group('name') is None else result.group(
                'name')[1:-1]
            out_size_expr = None if result.group(
                'expr') is None else result.group('expr')[1:-1]
            return output_type_map[out_type], out_name, out_size_expr
221 222 223 224

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
225
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
226
            return [out_type], [out_name], size_expr
227 228 229 230
        else:
            out_type_list = []
            out_name_list = []
            for output_item in temp_list:
231
                out_type, out_name, size_expr = parse_output_item(output_item)
232 233 234
                out_type_list.append(out_type)
                out_name_list.append(out_name)

235
            return out_type_list, out_name_list, size_expr
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
256
            'data_type': None,
257
            'use_gpudnn': 'false'
258 259 260 261 262 263 264 265 266
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
267 268 269 270
        if 'use_gpudnn' in kernel_config:
            kernel['use_gpudnn'] = kernel_config['use_gpudnn']
            if isinstance(kernel['use_gpudnn'], bool):
                kernel['use_gpudnn'] = str(kernel['use_gpudnn']).lower()
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        kernel['func'] = [
            kernel_fn.strip() for kernel_fn in kernel_config['func'].split(',')
        ]

        if len(kernel['func']) == 2:
            assert kernel['func'][0] == self.api, \
                    f"{self.api} : Kernel func error: If kernel has two func config, the name of first func should be same with api name({self.api}), \
                      but now is {kernel['func'][0]}."
            assert kernel['func'][1].endswith('_sr'), \
                    f"{self.api} : Kernel func error: If kernel has two func config, the name of second func should be a selected_rows kernel (the func name endwith '_sr'), \
                      but now is {kernel['func'][1]}."

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

297
    def parse_inplace_and_view(self, api_item_yaml):
298
        inplace_map, view_map = {}, {}
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        for mode in ['inplace', 'view']:
            if mode in api_item_yaml:
                if mode == 'inplace':
                    inplace_map = {}
                else:
                    view_map = {}
                in_out_mapping_list = api_item_yaml[mode].split(',')
                for item in in_out_mapping_list:
                    result = re.search(r"(?P<in>\w+)\s*->\s(?P<out>\w+)", item)
                    in_val = result.group('in')
                    out_val = result.group('out')
                    assert in_val in self.inputs['names'], \
                        f"{self.api} : {mode} input error: the input var name('{in_val}') is not found in the input args of {self.api}."
                    assert out_val in self.outputs['names'], \
                        f"{self.api} : {mode} output error: the output var name('{out_val}') is not found in the output args of {self.api}."

                    if mode == 'inplace':
                        inplace_map[out_val] = in_val
                    else:
                        view_map[out_val] = in_val

        return inplace_map, view_map
321

322
    # Override by child class
323
    def get_return_type(self, inplace_flag=False):
324 325 326
        return None

    def gene_api_declaration(self):
327 328 329 330 331
        api_declaration = ""
        api_func_name = self.get_api_func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()});
332 333
"""

334 335 336
        if self.is_base_api and len(self.inplace_map) > 0:
            if api_func_name[-1] != '_':
                api_func_name += '_'
337
            api_declaration = api_declaration + f"""
338
PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
339 340 341 342
"""

        return api_declaration

343 344 345 346 347 348 349 350 351
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
352
                assert (vars_list[0].strip() in self.attrs['names']) and (self.attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
384
            if attrs['attr_info'][attr_name][0] == 'const Place&':
385
                assert kernel['backend'] is not None, \
386
                    f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
387 388 389 390 391 392 393 394 395 396 397
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
398
        kernel_select_code = self.gene_kernel_backend_select()
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set data_type only allows 2, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
443
            assert attr_backend_count > 0 and attr_data_type_count > 0, \
444
                f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
445 446 447 448 449 450 451 452 453 454 455

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
456 457
            if self.support_selected_rows_kernel:
                kernel_select_code = kernel_select_code + f"""
458
  KernelType kernel_type = ParseKernelTypeByInputArgs({", ".join(input_names)});
459 460
"""

461 462 463 464 465
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
466
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
467 468 469 470 471 472 473 474 475 476 477 478 479
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

480
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
481 482 483 484
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

485 486
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
487 488 489 490 491
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
492 493 494 495 496
                if self.inputs['input_info'][param] == "const Tensor&":
                    param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
                elif self.inputs['input_info'][
                        param] == "const std::vector<Tensor>&":
                    meta_tensor_code = meta_tensor_code + f"""
497
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
498
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
499 500 501 502 503 504 505
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""

                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
506
                    meta_tensor_code = meta_tensor_code + f"""
H
hong 已提交
507
{code_indent}  paddle::optional<const phi::MetaTensor&> {PREFIX_TENSOR_NAME}meta_ref_{param} = paddle::none;
508 509
{code_indent}  phi::DenseTensor {param}_dt;
{code_indent}  phi::MetaTensor {PREFIX_TENSOR_NAME}meta_tmp_{param}({param}_dt);
H
hong 已提交
510 511 512 513 514 515
{code_indent}  if ({PREFIX_TENSOR_NAME}{param}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_dtype( {PREFIX_TENSOR_NAME}{param}_ptr->dtype() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_dims( {PREFIX_TENSOR_NAME}{param}_ptr->dims() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_layout( {PREFIX_TENSOR_NAME}{param}_ptr->layout() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_ref_{param} =  {PREFIX_TENSOR_NAME}meta_tmp_{param};
{code_indent}  }}\n"""
516 517 518

                    param_code = param_code + f"{PREFIX_TENSOR_NAME}meta_ref_{param}, "
                else:
519 520 521
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
522 523 524 525 526 527 528 529 530
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

531 532 533 534 535 536
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
537
{code_indent}    {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr;
538 539 540 541 542 543 544
{code_indent}  }}"""

                param_code = param_code + out_name + '_metas, '
            else:
                meta_tensor_code = meta_tensor_code + code_indent + "  phi::MetaTensor " + out_name.replace(
                    'kernel_',
                    PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n"
545 546 547 548
                if len(kernel_output_names) == 1:
                    param_code = param_code + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, "
                else:
                    param_code = param_code + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, "
549

550 551
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
552
{code_indent}  phi::{infer_meta['func']}({param_code});
553 554
"""

555
    def get_kernel_args(self, code_indent):
556
        input_trans_map = {
557
            'const Tensor&': 'const phi::DenseTensor&',
558
            'const std::vector<Tensor>&':
559
            'const std::vector<const phi::DenseTensor*>&',
H
hong 已提交
560 561 562
            'const paddle::optional<Tensor&>':
            'paddle::optional<const phi::DenseTensor&>',
            'paddle::optional<const Tensor&>':
563 564 565
            'paddle::optional<const phi::DenseTensor&>',
            'const paddle::optional<std::vector<Tensor>>&':
            'paddle::optional<const std::vector<phi::DenseTensor>&>'
566 567
        }
        out_trans_map = {
568 569
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&'
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
                trans_flag = "{}"
                if input_name in self.data_transform['skip_transform']:
                    trans_flag = "{true}"
                elif input_name in self.data_transform['support_trans_dtype']:
                    trans_flag = "{false, true}"
589 590 591 592 593 594 595 596 597
                if input_name in self.optional_vars:
                    input_tensor_code = input_tensor_code + f"""
{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::DenseTensor&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

                else:
598 599
                    if self.inputs['input_info'][input_name] == "const Tensor&":
                        input_tensor_code = input_tensor_code + f"""
600
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});"""
601

602 603 604 605 606 607 608 609 610 611 612 613
                    elif self.inputs['input_info'][
                            input_name] == "const std::vector<Tensor>&":
                        input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""

                    else:
                        # do nothing
                        pass
614
            else:
615 616 617 618 619 620 621 622 623 624
                if input_name in self.optional_vars:
                    input_tensor_code = input_tensor_code + f"""
{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = TensorToDenseTensor({input_name});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::DenseTensor&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

                else:
                    input_tensor_code = input_tensor_code + f"""
625 626 627 628 629
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToDenseTensor({input_name});"""

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
630 631 632
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
633 634 635
                    if self.inputs['input_info'][param] == "const Tensor&":
                        kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                    elif self.inputs['input_info'][
636
                            param] == "const std::vector<Tensor>&":
637 638 639 640
                        kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                    else:
                        # do nothing
                        pass
641 642
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
643 644
            elif param in attr_names:
                # set attr for kernel_context
645 646 647
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
648
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
649 650
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

    def get_selected_rows_kernel_args(self, code_indent):
        input_trans_map = {
669
            'const Tensor&': 'const phi::SelectedRows&',
670 671
            'const paddle::optional<Tensor>&':
            'paddle::optional<const phi::SelectedRows&>'
672
        }
673
        out_trans_map = {'Tensor': 'phi::SelectedRows*'}
674 675 676 677 678 679 680 681 682 683 684 685
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
686 687 688 689 690 691 692 693 694 695 696
            if input_name in self.optional_vars:
                input_tensor_code = input_tensor_code + f"""

{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = TensorToSelectedRows({input_name});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::SelectedRows&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

            else:
                input_tensor_code = input_tensor_code + f"""
697
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});"""
698 699 700 701

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
702 703 704 705 706 707
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
                    kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
708 709
            elif param in attr_names:
                # set attr for kernel_context
710 711 712
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
713
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
714 715
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

732 733
    # Override by child class
    def gene_return_code(self):
734
        return "return api_output;"
735

736
    # Override by child class
737 738 739 740 741
    def gene_output(self,
                    output_type_list,
                    set_out_func,
                    code_indent,
                    inplace_flag=False):
742 743
        return None, None, None

744
    def gen_dense_tensor_kernel_code(self, code_indent, inplace_flag=False):
745 746 747
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
748
            self.outputs['types'], 'SetKernelOutput', code_indent, inplace_flag)
749
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
Z
zyfncg 已提交
750
        cudnn_args = '' if self.kernel[
751
            'use_gpudnn'] == 'false' else ', ' + self.kernel['use_gpudnn']
752
        return f"""
F
From00 已提交
753
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
754
{code_indent}  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
755
{code_indent}      "{self.kernel['func'][0]}", {{kernel_backend, kernel_layout, kernel_data_type}}{cudnn_args});
756 757 758 759 760 761 762 763 764
{code_indent}  VLOG(6) << "{self.api} API kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
765
{code_indent}  {{
C
chenjian 已提交
766
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{api_func_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
767 768
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
769

770
{code_indent}  {self.gene_return_code()}"""
771

772
    def gen_selected_rows_kernel_code(self, code_indent, inplace_flag=False):
773 774 775
        input_tensors, kernel_args, kernel_signature = self.get_selected_rows_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
776 777
            self.outputs['types'], 'SetSelectedRowsKernelOutput', code_indent,
            inplace_flag)
778
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
779
        return f"""
780
{code_indent}  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
781 782 783 784 785 786 787 788 789 790 791
{code_indent}      "{self.kernel['func'][1]}", {{kernel_backend, kernel_layout, kernel_data_type}});
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
792
{code_indent}  {{
C
chenjian 已提交
793
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{api_func_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
794 795
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
796

797
{code_indent}  {self.gene_return_code()}"""
798

799
    def gene_base_api_code(self, inplace_flag=False):
800 801 802
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
803
        api_code = f"""
804
PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{
805
{self.gene_kernel_select()}
806
"""
807

808 809 810
        if self.support_selected_rows_kernel:
            code_indent = '  '
            return api_code + f"""
811
  if(kernel_type == KernelType::DENSE_TENSOR_KENREL){{
812
{self.gen_dense_tensor_kernel_code(code_indent, inplace_flag)}
813
  }} else {{
814
{self.gen_selected_rows_kernel_code(code_indent, inplace_flag)}
815
  }}
816
}}
817 818
"""

819 820 821 822
        else:
            code_indent = ''
            return api_code + self.gen_dense_tensor_kernel_code(
                code_indent, inplace_flag) + """
823
}
824 825
"""

826 827
    def gene_invoke_code(self, invoke_code, params_code):
        return f"""
828
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
829 830 831
  return {invoke_code};
}}"""

832 833 834
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
835
            if len(self.inplace_map) > 0:
836 837 838
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

839 840 841 842 843 844 845 846 847 848 849 850
        else:
            inveke_func_name = self.invoke.split('(')[0].strip()
            if inveke_func_name in self.attrs['names']:
                # Adjust the param whose name is same with api invoked.
                pattern = r'\W' + inveke_func_name + '[^A-Za-z0-9_(]'

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
851
                                     self.get_define_args())
852 853
            else:
                invoke_code = self.invoke
854 855
                params_code = self.get_define_args()
            return self.gene_invoke_code(invoke_code, params_code)