test_channel_shuffle.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import numpy as np
18
from op_test import OpTest
19

20 21
import paddle
import paddle.fluid as fluid
22 23
import paddle.fluid.core as core
import paddle.nn.functional as F
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


def channel_shuffle_np(x, groups, data_format="NCHW"):
    if data_format == "NCHW":
        n, c, h, w = x.shape
        new_shape = (n, groups, c // groups, h, w)
        npresult = np.reshape(x, new_shape)
        npresult = npresult.transpose(0, 2, 1, 3, 4)
        oshape = [n, c, h, w]
        npresult = np.reshape(npresult, oshape)
        return npresult
    else:
        n, h, w, c = x.shape
        new_shape = (n, h, w, groups, c // groups)
        npresult = np.reshape(x, new_shape)
        npresult = npresult.transpose(0, 1, 2, 4, 3)
        oshape = [n, h, w, c]
        npresult = np.reshape(npresult, oshape)
        return npresult


class TestChannelShuffleOp(OpTest):
    def setUp(self):
        self.op_type = "channel_shuffle"
        self.init_data_format()
        n, c, h, w = 2, 9, 4, 4
50
        self.python_api = paddle.nn.functional.channel_shuffle
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        groups = 3

        x = np.random.random(shape).astype("float64")
        npresult = channel_shuffle_np(x, groups, self.format)

        self.inputs = {'X': x}
        self.outputs = {'Out': npresult}
        self.attrs = {'groups': groups, "data_format": self.format}

    def init_data_format(self):
        self.format = "NCHW"

    def test_check_output(self):
70
        self.check_output(check_eager=True)
71 72

    def test_check_grad(self):
73
        self.check_grad(['X'], 'Out', check_eager=True)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88


class TestChannelLast(TestChannelShuffleOp):
    def init_data_format(self):
        self.format = "NHWC"


class TestChannelShuffleAPI(unittest.TestCase):
    def setUp(self):
        self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float64")
        self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float64")
        self.out_1_np = channel_shuffle_np(self.x_1_np, 3)
        self.out_2_np = channel_shuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
89 90 91
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
92 93 94
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
95 96 97 98 99 100
            x_1 = paddle.fluid.data(
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
            x_2 = paddle.fluid.data(
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
101 102 103 104
            out_1 = F.channel_shuffle(x_1, 3)
            out_2 = F.channel_shuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
105 106 107 108 109 110 111 112 113 114 115 116 117
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
118 119 120 121 122 123

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
124 125 126
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
127 128 129
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
130 131 132 133 134 135
            x_1 = paddle.fluid.data(
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
            x_2 = paddle.fluid.data(
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
136 137 138 139 140 141 142 143 144
            # init instance
            ps_1 = paddle.nn.ChannelShuffle(3)
            ps_2 = paddle.nn.ChannelShuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = channel_shuffle_np(self.x_1_np, 3)
            out_2_np = channel_shuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
145 146 147 148 149 150 151 152 153 154 155 156 157
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, groups, data_format):

        n, c, h, w = 2, 9, 4, 4

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = channel_shuffle_np(x, groups, data_format)

175 176 177
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
178 179 180 181
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

182 183 184
            channel_shuffle = paddle.nn.ChannelShuffle(
                groups, data_format=data_format
            )
185 186
            result = channel_shuffle(paddle.to_tensor(x))

187
            np.testing.assert_allclose(result.numpy(), npresult, rtol=1e-05)
188

189 190 191 192 193 194
            result_functional = F.channel_shuffle(
                paddle.to_tensor(x), 3, data_format
            )
            np.testing.assert_allclose(
                result_functional.numpy(), npresult, rtol=1e-05
            )
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

            channel_shuffle_str = 'groups={}'.format(groups)
            if data_format != 'NCHW':
                channel_shuffle_str += ', data_format={}'.format(data_format)
            self.assertEqual(channel_shuffle.extra_repr(), channel_shuffle_str)

    def test_dygraph1(self):
        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        self.run_dygraph(3, "NHWC")


class TestChannelShuffleError(unittest.TestCase):
    def test_error_functional(self):
        def error_input():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([9, 4, 4]).astype("float64")
                channel_shuffle = F.channel_shuffle(paddle.to_tensor(x), 3)

        self.assertRaises(ValueError, error_input)

        def error_groups_1():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                channel_shuffle = F.channel_shuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_groups_1)

        def error_groups_2():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                channel_shuffle = F.channel_shuffle(paddle.to_tensor(x), -1)

        self.assertRaises(ValueError, error_groups_2)

        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
234 235 236
                channel_shuffle = F.channel_shuffle(
                    paddle.to_tensor(x), 3, "WOW"
                )
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        def error_input_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([9, 4, 4]).astype("float64")
                cs = paddle.nn.ChannelShuffle(3)
                cs(paddle.to_tensor(x))

        self.assertRaises(ValueError, error_input_layer)

        def error_groups_layer_1():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                cs = paddle.nn.ChannelShuffle(3.33)

        self.assertRaises(TypeError, error_groups_layer_1)

        def error_groups_layer_2():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                cs = paddle.nn.ChannelShuffle(-1)

        self.assertRaises(ValueError, error_groups_layer_2)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                cs = paddle.nn.ChannelShuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


if __name__ == '__main__':
    unittest.main()