test_ctc_align.py 8.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17 18 19
import sys
import unittest
import numpy as np
20 21
from op_test import OpTest
from test_softmax_op import stable_softmax
22
import paddle.fluid as fluid
H
hong 已提交
23
import paddle
24 25


26 27
def CTCAlign(input, lod, blank, merge_repeated, padding=0, input_length=None):
    if input_length is None:
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
        lod0 = lod[0]
        result = []
        cur_offset = 0
        for i in range(len(lod0)):
            prev_token = -1
            for j in range(cur_offset, cur_offset + lod0[i]):
                token = input[j][0]
                if (token != blank) and not (merge_repeated and
                                             token == prev_token):
                    result.append(token)
                prev_token = token
            cur_offset += lod0[i]
        result = np.array(result).reshape([len(result), 1]).astype("int32")
        if len(result) == 0:
            result = np.array([-1])
43
        return result
44 45
    else:
        result = [[] for i in range(len(input))]
46
        output_length = []
47 48
        for i in range(len(input)):
            prev_token = -1
49
            for j in range(input_length[i][0]):
50 51 52 53 54 55
                token = input[i][j]
                if (token != blank) and not (merge_repeated and
                                             token == prev_token):
                    result[i].append(token)
                prev_token = token
            start = len(result[i])
56
            output_length.append([start])
57 58 59 60
            for j in range(start, len(input[i])):
                result[i].append(padding)
        result = np.array(result).reshape(
            [len(input), len(input[0])]).astype("int32")
61 62
        output_length = np.array(output_length).reshape(
            [len(input), 1]).astype("int32")
63

64
    return result, output_length
65 66


W
wanghaoshuang 已提交
67
class TestCTCAlignOp(OpTest):
68
    def config(self):
W
wanghaoshuang 已提交
69
        self.op_type = "ctc_align"
70
        self.input_lod = [[11, 7]]
71 72 73 74 75 76 77 78
        self.blank = 0
        self.merge_repeated = False
        self.input = np.array(
            [0, 1, 2, 2, 0, 4, 0, 4, 5, 0, 6, 6, 0, 0, 7, 7, 7, 0]).reshape(
                [18, 1]).astype("int32")

    def setUp(self):
        self.config()
W
wanghaoshuang 已提交
79 80
        output = CTCAlign(self.input, self.input_lod, self.blank,
                          self.merge_repeated)
81 82 83 84 85 86 87 88 89 90 91 92 93

        self.inputs = {"Input": (self.input, self.input_lod), }
        self.outputs = {"Output": output}
        self.attrs = {
            "blank": self.blank,
            "merge_repeated": self.merge_repeated
        }

    def test_check_output(self):
        self.check_output()
        pass


W
wanghaoshuang 已提交
94
class TestCTCAlignOpCase1(TestCTCAlignOp):
95
    def config(self):
W
wanghaoshuang 已提交
96
        self.op_type = "ctc_align"
97
        self.input_lod = [[11, 8]]
98 99 100
        self.blank = 0
        self.merge_repeated = True
        self.input = np.array(
W
wanghaoshuang 已提交
101 102
            [0, 1, 2, 2, 0, 4, 0, 4, 5, 0, 6, 6, 0, 0, 7, 7, 7, 0, 0]).reshape(
                [19, 1]).astype("int32")
103 104


105 106 107
class TestCTCAlignOpCase2(TestCTCAlignOp):
    def config(self):
        self.op_type = "ctc_align"
108
        self.input_lod = [[4]]
109 110 111 112 113
        self.blank = 0
        self.merge_repeated = True
        self.input = np.array([0, 0, 0, 0]).reshape([4, 1]).astype("int32")


114 115 116 117 118
class TestCTCAlignPaddingOp(OpTest):
    def config(self):
        self.op_type = "ctc_align"
        self.input_lod = []
        self.blank = 0
119
        self.padding_value = 0
120 121 122 123
        self.merge_repeated = True
        self.input = np.array([[0, 2, 4, 4, 0, 6, 3, 6, 6, 0, 0],
                               [1, 1, 3, 0, 0, 4, 5, 6, 0, 0, 0]]).reshape(
                                   [2, 11]).astype("int32")
124
        self.input_length = np.array([[9], [8]]).reshape([2, 1]).astype("int32")
125 126 127

    def setUp(self):
        self.config()
128 129 130 131 132 133 134 135
        output, output_length = CTCAlign(self.input, self.input_lod, self.blank,
                                         self.merge_repeated,
                                         self.padding_value, self.input_length)
        self.inputs = {
            "Input": (self.input, self.input_lod),
            "InputLength": self.input_length
        }
        self.outputs = {"Output": output, "OutputLength": output_length}
136 137 138
        self.attrs = {
            "blank": self.blank,
            "merge_repeated": self.merge_repeated,
139
            "padding_value": self.padding_value
140 141 142 143 144 145 146 147 148 149 150 151
        }

    def test_check_output(self):
        self.check_output()


class TestCTCAlignOpCase3(TestCTCAlignPaddingOp):
    def config(self):
        self.op_type = "ctc_align"
        self.blank = 0
        self.input_lod = []
        self.merge_repeated = True
152
        self.padding_value = 0
153 154 155
        self.input = np.array([[0, 1, 2, 2, 0, 4], [0, 4, 5, 0, 6, 0],
                               [0, 7, 7, 7, 0, 0]]).reshape(
                                   [3, 6]).astype("int32")
156 157
        self.input_length = np.array([[6], [5],
                                      [4]]).reshape([3, 1]).astype("int32")
158 159 160 161


class TestCTCAlignOpCase4(TestCTCAlignPaddingOp):
    '''
162
    # test tensor input which has attr input padding_value
163 164 165 166 167 168 169
    '''

    def config(self):
        self.op_type = "ctc_align"
        self.blank = 0
        self.input_lod = []
        self.merge_repeated = False
170
        self.padding_value = 0
171 172 173
        self.input = np.array([[0, 1, 2, 2, 0, 4], [0, 4, 5, 0, 6, 0],
                               [0, 7, 7, 7, 0, 0]]).reshape(
                                   [3, 6]).astype("int32")
174 175
        self.input_length = np.array([[6], [5],
                                      [4]]).reshape([3, 1]).astype("int32")
176 177 178 179 180 181 182 183


class TestCTCAlignOpCase5(TestCTCAlignPaddingOp):
    def config(self):
        self.op_type = "ctc_align"
        self.blank = 0
        self.input_lod = []
        self.merge_repeated = False
184
        self.padding_value = 1
185 186 187
        self.input = np.array([[0, 1, 2, 2, 0, 4], [0, 4, 5, 0, 6, 0],
                               [0, 7, 1, 7, 0, 0]]).reshape(
                                   [3, 6]).astype("int32")
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        self.input_length = np.array([[6], [5],
                                      [4]]).reshape([3, 1]).astype("int32")


class TestCTCAlignOpApi(unittest.TestCase):
    def test_api(self):
        x = fluid.layers.data('x', shape=[4], dtype='float32')
        y = fluid.layers.ctc_greedy_decoder(x, blank=0)

        x_pad = fluid.layers.data('x_pad', shape=[4, 4], dtype='float32')
        x_pad_len = fluid.layers.data('x_pad_len', shape=[1], dtype='int64')
        y_pad, y_pad_len = fluid.layers.ctc_greedy_decoder(
            x_pad, blank=0, input_length=x_pad_len)

        place = fluid.CPUPlace()
        x_tensor = fluid.create_lod_tensor(
            np.random.rand(8, 4).astype("float32"), [[4, 4]], place)

        x_pad_tensor = np.random.rand(2, 4, 4).astype("float32")
        x_pad_len_tensor = np.array([[4], [4]]).reshape([2, 1]).astype("int64")

        exe = fluid.Executor(place)

        exe.run(fluid.default_startup_program())
        ret = exe.run(feed={
            'x': x_tensor,
            'x_pad': x_pad_tensor,
            'x_pad_len': x_pad_len_tensor
        },
                      fetch_list=[y, y_pad, y_pad_len],
                      return_numpy=False)
219 220


221 222 223 224 225 226 227 228 229 230 231
class BadInputTestCTCAlignr(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
                x = fluid.layers.data(name='x', shape=[8], dtype='int64')
                cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)

            self.assertRaises(TypeError, test_bad_x)


232
if __name__ == "__main__":
H
hong 已提交
233
    paddle.enable_static()
234
    unittest.main()