transfer_layout_kernel.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/transfer_layout_kernel.h"
16

17 18 19
#include <sstream>
#include <string>

20 21
#include "glog/logging.h"

22 23
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
24
#include "paddle/phi/core/visit_type.h"
25
#include "paddle/phi/kernels/funcs/data_layout_transform.h"
26
#include "paddle/phi/kernels/funcs/math_function.h"
27
#include "paddle/phi/kernels/memcpy_kernel.h"
28
#ifdef PADDLE_WITH_MKLDNN
29
#include "paddle/phi/backends/onednn/onednn_helper.h"
30
#endif
31
namespace phi {
32 33 34 35 36

std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to) {
  PADDLE_ENFORCE_NE(
      from,
      to,
37
      phi::errors::InvalidArgument(
38 39 40 41 42 43
          "Layout transform should transform between different layout."));
  if (from == DataLayout::NCHW && to == DataLayout::NHWC) {
    return {0, 2, 3, 1};
  } else if (from == DataLayout::NHWC && to == DataLayout::NCHW) {
    return {0, 3, 1, 2};
  } else {
44
    PADDLE_THROW(phi::errors::InvalidArgument("Unsupported layout transform."));
45 46 47 48 49 50 51 52
  }
}

template <typename T, typename Context>
void CastDataLayout(const Context& dev_ctx,
                    const DenseTensor& x,
                    const std::vector<int>& axis,
                    DenseTensor* out) {
53
  funcs::Transpose<Context, T, 4> trans4;
54 55 56 57
  trans4(dev_ctx, x, out, axis);
}

template <typename Context>
58 59 60 61
void TransferLayoutGeneral(const Context& dev_ctx,
                           const DenseTensor& x,
                           DataLayout dst_layout,
                           DenseTensor* out) {
62 63 64 65 66 67 68 69 70 71
  auto src_dim = x.dims();

  auto axis = GetAxis(x.layout(), dst_layout);

  std::vector<int64_t> dst_dim;
  dst_dim.resize(axis.size());
  for (size_t i = 0; i < axis.size(); i++) {
    dst_dim[i] = src_dim[axis[i]];
  }

72 73
  out->Resize(phi::make_ddim(dst_dim));
  dev_ctx.Alloc(out, x.dtype());
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  // In GPU fp16 model, we will insert many transfer_layout ops in
  // conv2d_fusion_layout_transfer_pass, so we optimize this kernel on GPU
  if (std::is_same<Context, phi::GPUContext>::value) {
    std::vector<int> axis_nchw_nhwc = {0, 2, 3, 1};
    std::vector<int> axis_nhwc_nchw = {0, 3, 1, 2};
    const int batch = src_dim[0];
    int row_len = src_dim[1];
    int col_len = src_dim[2] * src_dim[3];
    if (axis == axis_nhwc_nchw) {
      row_len = src_dim[1] * src_dim[2];
      col_len = src_dim[3];
    }
    if (x.dtype() == phi::DataType::FLOAT16) {
      funcs::BatchTranspose(out->data<phi::dtype::float16>(),
                            x.data<phi::dtype::float16>(),
                            batch,
                            row_len,
                            col_len);
      return;
    } else if (x.dtype() == phi::DataType::FLOAT32) {
      funcs::BatchTranspose(
          out->data<float>(), x.data<float>(), batch, row_len, col_len);
      return;
    }
  }

101 102 103 104 105
  PD_VISIT_ALL_TYPES(x.dtype(), "CastDataLayout", ([&] {
                       CastDataLayout<data_t, Context>(dev_ctx, x, axis, out);
                     }));
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#ifdef PADDLE_WITH_MKLDNN
template <typename Context>
void TransferLayoutMKLDNN(const Context& dev_ctx,
                          const DenseTensor& x,
                          DataLayout src_layout,
                          DataLayout dst_layout,
                          DenseTensor* out) {
  auto print_tensor_meta = [](const DenseTensor& x) {
    std::ostringstream oss;

    oss << "[";
    oss << "layout:" << x.layout() << " ,";
    oss << "dims:" << x.dims() << " ,";
    if (x.IsInitialized()) oss << "place:" << x.place();
    oss << "]";

    return oss.str();
  };
  VLOG(10) << " x: " << print_tensor_meta(x);
  VLOG(10) << " out: " << print_tensor_meta(*out) << " " << out;

  // NOTE(zhiqiu): to handle the special case in ApplyDataTransform() in
  // data_transfer.cc
129
  if (!x.IsInitialized() && src_layout == DataLayout::ONEDNN &&
130 131 132 133 134 135 136 137
      dst_layout == DataLayout::NHWC) {
    VLOG(4) << src_layout << "->" << dst_layout << " " << x.layout();
    out->Resize(x.dims());
    out->set_layout(dst_layout);
    funcs::MatchShapeToLayout(out, src_layout, dst_layout);
    return;
  }

138
  if (src_layout != DataLayout::ONEDNN && dst_layout == DataLayout::ONEDNN) {
139 140 141 142 143 144 145 146 147 148 149
    // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
    // Just set layout/format. No real transform occur
    out->ShareDataWith(x);
    // For NHWC data we need reshape of tensors as MKL-DNN
    // is expecting NHWC dims description order
    if (src_layout == DataLayout::NHWC) {
      VLOG(4) << "NHWC";
      funcs::MatchShapeToLayout(out, src_layout, dst_layout);
      OneDNNContext::tls().set_cur_paddle_data_layout(src_layout);
    }

150
    dnnl::memory::desc out_mem_desc = funcs::make_memory_desc(*out, src_layout);
151
    out->set_mem_desc(out_mem_desc);
152 153
  } else if (src_layout == DataLayout::ONEDNN &&
             dst_layout != DataLayout::ONEDNN) {
154 155
    // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
    // Do transform via MKLDNN lib
156
    funcs::TransDataLayoutFromOneDNN(
157
        src_layout, dst_layout, x, out, dev_ctx.GetPlace());
158 159
  } else if (src_layout == DataLayout::ONEDNN &&
             dst_layout == DataLayout::ONEDNN) {
160 161 162 163
    PADDLE_ENFORCE_NE(
        src_layout,
        dst_layout,
        errors::PreconditionNotMet(
164
            "No layout transform needed between two oneDNN OPKernels."));
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  } else {
    TransferLayoutGeneral<Context>(dev_ctx, x, dst_layout, out);
  }
}
#endif

template <typename Context>
void TransferLayoutKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          int src_layout,
                          int dst_layout,
                          DenseTensor* out) {
  PADDLE_ENFORCE_NE(src_layout,
                    dst_layout,
                    errors::PreconditionNotMet(
                        "No layout transform needed between same layout."));
  VLOG(10) << "TransDataLayout from " << static_cast<DataLayout>(src_layout)
           << " -> " << static_cast<DataLayout>(dst_layout);

184 185 186 187 188 189 190
  VLOG_IF(10, x.initialized()) << "TransDataLayout from " << x.layout();
  if (x.layout() == static_cast<DataLayout>(dst_layout)) {
    VLOG(10) << "No need to transform, already is " << x.layout();
    Copy(dev_ctx, x, dev_ctx.GetPlace(), false, out);
    return;
  }

191 192 193 194 195 196 197 198 199 200 201 202
#ifdef PADDLE_WITH_MKLDNN
  TransferLayoutMKLDNN<Context>(dev_ctx,
                                x,
                                static_cast<DataLayout>(src_layout),
                                static_cast<DataLayout>(dst_layout),
                                out);
#else
  TransferLayoutGeneral<Context>(
      dev_ctx, x, static_cast<DataLayout>(dst_layout), out);
#endif
}

203
}  // namespace phi
204

205
PD_REGISTER_GENERAL_KERNEL(transfer_layout,
206 207
                           CPU,
                           ALL_LAYOUT,
208
                           phi::TransferLayoutKernel<phi::CPUContext>,
209
                           ALL_DTYPE) {}
210 211 212 213 214 215 216
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_GENERAL_KERNEL(transfer_layout,
                           GPU,
                           ALL_LAYOUT,
                           phi::TransferLayoutKernel<phi::GPUContext>,
                           ALL_DTYPE) {}
#endif