layer_norm_impl.cu.h 80.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

25 26
#include <iostream>

27 28
#include "glog/logging.h"

29
#include "paddle/phi/backends/gpu/gpu_context.h"
30
#include "paddle/phi/backends/gpu/gpu_device_function.h"
31
#include "paddle/phi/backends/gpu/gpu_dnn.h"
32
#include "paddle/phi/common/memory_utils.h"
33
#include "paddle/phi/core/ddim.h"
34
#include "paddle/phi/kernels/funcs/aligned_vector.h"
35

36 37
namespace phi {
namespace funcs {
38 39

template <typename T>
40
using CudnnDataType = phi::backends::gpu::CudnnDataType<T>;
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
template <typename T>
using LayerNormParamType = typename CudnnDataType<T>::BatchNormParamType;

inline static int GetDesiredBlockDim(int64_t block_dim) {
#ifdef __HIPCC__
  const int kMaxBlockDim = 256;
  const int lwarpSize = 64;
#else
  const int kMaxBlockDim = 512;
  const int lwarpSize = 32;
#endif
  return block_dim >= kMaxBlockDim ? kMaxBlockDim : lwarpSize;
}

template <typename U>
static __forceinline__ __device__ U WarpReduceSum(U val) {
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, true);
  for (int offset = warpSize / 2; offset > 0; offset /= 2) {
60
    val += phi::backends::gpu::CudaShuffleDownSync(mask, val, offset);
61 62 63 64 65 66 67 68 69
  }
  return val;
}

template <typename U>
__forceinline__ __device__ U BlockReduceSum(U val, U *shared) {
  int lane = threadIdx.x % warpSize;
  int wid = threadIdx.x / warpSize;

70
  val = WarpReduceSum(val);          // Each warp performs partial reduction
71
  if (lane == 0) shared[wid] = val;  // Write reduced value to shared memory
72
  __syncthreads();                   // Wait for all partial reductions
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  // read from shared memory only if that warp existed
  val =
      (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : static_cast<U>(0);

  if (wid == 0) val = WarpReduceSum(val);  // Final reduce within first warp

  return val;
}

#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...)  \
  case (1 << (log2_block_dim)): {                       \
    constexpr auto kBlockDim = (1 << (log2_block_dim)); \
    __VA_ARGS__;                                        \
  } break

#define FIXED_BLOCK_DIM_CASE(...)              \
  FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(2, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(1, ##__VA_ARGS__)

#define FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                          \
    log2_block_dim, feature_size, kMaxBlockNum, ...)                        \
  case (1 << (log2_block_dim)): {                                           \
    for (int64_t i = 0; i < std::ceil(feature_size / (1.0 * kMaxBlockNum)); \
         i++) {                                                             \
      int64_t col_offset = i * static_cast<int64_t>(kMaxBlockNum);          \
      int block_num = static_cast<int>(std::min(                            \
          feature_size - col_offset, static_cast<int64_t>(kMaxBlockNum)));  \
      constexpr auto kBlockDim = (1 << (log2_block_dim));                   \
      __VA_ARGS__;                                                          \
    }                                                                       \
  } break

#define FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(feature_size, kMaxBlockNum, ...) \
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      9, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      8, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      7, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      6, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      5, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      4, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      3, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      2, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      1, feature_size, kMaxBlockNum, ##__VA_ARGS__)
131 132

static __device__ __forceinline__ float real_sqrt(float x) { return sqrtf(x); }
S
sneaxiy 已提交
133 134 135
static __device__ __forceinline__ double real_sqrt(double x) {
  return ::sqrt(x);
}
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

template <typename T>
struct PairForLayerNorm {
  __device__ __forceinline__ PairForLayerNorm() {}
  __device__ __forceinline__ PairForLayerNorm(const T &first, const T &second)
      : first_(first), second_(second) {}

  T first_;
  T second_;
};

template <typename T>
struct PairForLayerNormAddFunctor {
  __device__ __forceinline__ PairForLayerNorm<T> operator()(
      const PairForLayerNorm<T> &p1, const PairForLayerNorm<T> &p2) {
    return PairForLayerNorm<T>(p1.first_ + p2.first_, p1.second_ + p2.second_);
  }
};

template <typename T>
__inline__ __device__ T rsqrt_(const T val) {
  return static_cast<T>(1) / sqrt(val);
}

template <>
__inline__ __device__ float rsqrt_(const float val) {
  return rsqrtf(val);
}

template <>
__inline__ __device__ double rsqrt_(const double val) {
S
sneaxiy 已提交
167
  return ::rsqrt(val);
168 169 170 171 172 173 174 175 176
}

#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
template <>
__inline__ __device__ half rsqrt_(const half val) {
  return hrsqrt(val);
}
#endif

177
#ifdef PADDLE_WITH_CUDA
178 179 180 181 182 183 184 185 186
template <typename T,
          typename U,
          typename ScaleT = U,
          int VecSize = 8,
          int WARPS_M = 4,
          int WARPS_N = 1,
          int BYTES_PER_LDG = 16,
          int ELTS_PER_ROW = 1024,
          int THREADS_PER_WARP = 32,
187 188 189 190 191
          int THREADS_PER_ROW = WARPS_N *THREADS_PER_WARP,
          int THREADS_PER_CTA = WARPS_M *THREADS_PER_ROW,
          int ROWS_PER_CTA = WARPS_M,
          int ELTS_PER_ROW_PER_CTA = THREADS_PER_ROW *VecSize,
          int LDGS = ELTS_PER_ROW / ELTS_PER_ROW_PER_CTA>
192
__global__ __launch_bounds__(THREADS_PER_CTA) void fast_ln_fwd_kernel(
193 194 195 196 197 198 199 200
    int rows,
    int cols,
    const float epsilon,
    const T *__restrict__ x_ptr,
    const ScaleT *__restrict__ gamma_ptr,
    const ScaleT *__restrict__ beta_ptr,
    U *__restrict__ mean_out_ptr,
    U *__restrict__ var_out_ptr,
201
    T *__restrict__ y_ptr) {
202
  __shared__ U smem[WARPS_M * WARPS_N];
203 204
  using Vec = phi::AlignedVector<T, VecSize>;
  using Vec_scale = phi::AlignedVector<ScaleT, VecSize>;
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

  const int tidx = threadIdx.x;
  const int bidx = blockIdx.x;
  const int lane = tidx % THREADS_PER_WARP;  // 0, 1, ..., 31
  const int warp = tidx / THREADS_PER_WARP;  // 0, 1, 2, 3
  const int warp_n = warp % WARPS_N;         // 0
  const int warp_m = warp / WARPS_N;         // 0, 1, 2, 3

  const int c = warp_n * THREADS_PER_WARP + lane;  // lane
  const int r = bidx * ROWS_PER_CTA + warp_m;      // row id

  Vec_scale gamma[LDGS];
  Vec_scale beta[LDGS];
#pragma unroll
  for (int it = 0, col = c; it < LDGS; it++) {
220 221
    phi::Load<ScaleT, VecSize>(gamma_ptr + col * VecSize, &gamma[it]);
    phi::Load<ScaleT, VecSize>(beta_ptr + col * VecSize, &beta[it]);
222 223 224
    col += THREADS_PER_ROW;
  }

225
  constexpr U rn = 1.f / U(ELTS_PER_ROW);
226 227 228 229
  for (int row = r; row < rows; row += gridDim.x * ROWS_PER_CTA) {
    Vec x[LDGS];
#pragma unroll
    for (int it = 0, col = c; it < LDGS; it++) {
230
      phi::Load<T, VecSize>(x_ptr + row * ELTS_PER_ROW + col * VecSize, &x[it]);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      col += THREADS_PER_ROW;
    }
    U xf[LDGS * VecSize];

    U mu_local = 0.f;

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        xf[it * VecSize + jt] = U(x[it][jt]);
        mu_local += xf[it * VecSize + jt];
      }
    }

#pragma unroll
    for (int it = 1; it < THREADS_PER_WARP; it *= 2) {
      mu_local += __shfl_xor_sync(uint32_t(-1), mu_local, it);
    }
250 251 252 253 254
    if (WARPS_N > 1) {
      if (lane == 0) {
        smem[warp_m * WARPS_N + warp_n] = mu_local;
      }
      __syncthreads();
255
      if (tidx % THREADS_PER_ROW == 0) {
256 257 258 259 260 261 262 263 264 265 266
        mu_local = 0.f;
#pragma unroll
        for (int it = 0; it < WARPS_N; ++it) {
          mu_local += smem[warp_m * WARPS_N + it];
        }
        smem[warp_m] = mu_local;
      }
      __syncthreads();
      mu_local = smem[warp_m];
    }

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    mu_local *= rn;
    if (lane == 0) {
      mean_out_ptr[row] = mu_local;
    }
    U var_local = 0.f;

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        U diff = xf[it * VecSize + jt] - mu_local;
        var_local += diff * diff;
      }
    }

#pragma unroll
    for (int it = 1; it < THREADS_PER_WARP; it *= 2) {
      var_local += __shfl_xor_sync(uint32_t(-1), var_local, it);
    }
286 287 288 289 290 291

    if (WARPS_N > 1) {
      if (lane == 0) {
        smem[warp_m * WARPS_N + warp_n] = var_local;
      }
      __syncthreads();
292
      if (tidx % THREADS_PER_ROW == 0) {
293 294 295 296 297 298 299 300 301 302 303
        var_local = 0.f;
#pragma unroll
        for (int it = 0; it < WARPS_N; ++it) {
          var_local += smem[warp_m * WARPS_N + it];
        }
        smem[warp_m] = var_local;
      }
      __syncthreads();
      var_local = smem[warp_m];
    }

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    // Note: to assure if it is right for double
    U rsigma = rsqrtf(var_local * rn + epsilon);
    if (lane == 0) {
      var_out_ptr[row] = var_local * rn;
    }

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        // use fp16 to compute
        // ScaleT tmp = static_cast<ScaleT>(rsigma * (xf[it * VecSize + jt] -
        // mu_local));
        // x[it][jt] = gamma[it][jt] *  tmp + beta[it][jt];
        // cast to fp32 to compute
        U tmp = (rsigma * (static_cast<U>(xf[it * VecSize + jt]) - mu_local));
        x[it][jt] = static_cast<T>(static_cast<U>(gamma[it][jt]) * tmp +
                                   static_cast<U>(beta[it][jt]));
      }
    }

#pragma unroll
    for (int it = 0, col = c; it < LDGS; it++) {
327
      phi::Store<T, VecSize>(x[it], y_ptr + row * ELTS_PER_ROW + col * VecSize);
328 329 330 331 332 333
      col += THREADS_PER_ROW;
    }
  }
}
#endif

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
template <typename T>
inline HOSTDEVICE T roundWithTiesToEven(T x) {
  T xLower = floor(x);
  T xUpper = ceil(x);
  // x is in interval [xl,xu]. Choose closest of two bounds, breaking ties to
  // even.
  T dLower = x - xLower;
  T dUpper = xUpper - x;
  return static_cast<T>(
      (dLower == dUpper ? fmod(xLower, 2.0F) == 0.0F : dLower < dUpper)
          ? xLower
          : xUpper);
}

template <typename T>
__forceinline__ __device__ int8_t quant_helper(const T input,
                                               const float scale,
                                               const int round_type,
                                               const float max_bound,
                                               const float min_bound) {
  float quant_value = max_bound * scale * static_cast<float>(input);

  if (round_type == 0) {
    quant_value = static_cast<float>(roundWithTiesToEven(quant_value));
  } else {
    quant_value = static_cast<float>(round(quant_value));
  }
  quant_value = quant_value > max_bound ? max_bound : quant_value;
  quant_value = quant_value < min_bound ? min_bound : quant_value;
  return static_cast<int8_t>(quant_value);
}

366 367 368 369
template <typename T, typename U, bool ScaleBiasWithSameTypeX>
using LayerNormScaleBiasT =
    typename std::conditional<ScaleBiasWithSameTypeX, T, U>::type;

370 371 372
template <typename T,
          typename U,
          int BlockDim,
373 374 375
          bool ScaleBiasWithSameTypeX = false,
          typename InType = T,
          typename OutType = T>
376
__global__ void LayerNormForward(
377
    const InType *x,
378 379
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *bias,
380
    OutType *y,
381 382 383
    U *mean,
    U *var,
    float epsilon,
384 385 386 387 388 389 390
    int64_t feature_size,
    const float *dequant_out_scale_data = nullptr,
    const int quant_out_scale_offset = 0,
    const float quant_in_scale = 1.0,
    const int quant_round_type = 1,
    const float quant_max_bound = 127.0,
    const float quant_min_bound = -127.0) {
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
  __shared__ U mean_share;
  __shared__ U var_share;
  __shared__ U shared_mean[32];  // threadIdx.x / warpSize <= kMaxBlockDim /
                                 // warpSize <= 1024/32 = 32;
  __shared__ U shared_var[32];

  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;

  // Step 1: Reduce to calculate mean and var
  U mean_val = 0;
  U var_val = 0;
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    U tmp = static_cast<U>(x[i]);
    mean_val += tmp;
    var_val += (tmp * tmp);
  }

  mean_val = BlockReduceSum<U>(mean_val, shared_mean);
  var_val = BlockReduceSum<U>(var_val, shared_var);

  if (threadIdx.x == 0) {
413 414
    auto scale = static_cast<U>(static_cast<float>(1.) /
                                static_cast<float>(feature_size));
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    auto tmp = mean_val * scale;
    mean[blockIdx.x] = mean_share = static_cast<U>(tmp);
    var_share = static_cast<U>(var_val * scale - mean_share * mean_share);
    var_share = var_share > U(0) ? var_share : U(0);
    var[blockIdx.x] = var_share;
  }
  __syncthreads();

  mean_val = mean_share;
  U invvar = rsqrt_<U>(var_share + static_cast<U>(epsilon));

  // Step 2: Calculate y
  if (scale != nullptr) {
    if (bias != nullptr) {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        if (std::is_same<OutType, int8_t>::value) {
          y[i] = quant_helper(
              static_cast<T>(static_cast<U>(scale[j]) *
                                 (static_cast<U>(x[i]) - mean_val) * invvar +
                             static_cast<U>(bias[j])),
              quant_in_scale,
              quant_round_type,
              quant_max_bound,
              quant_min_bound);
        } else {
          y[i] = static_cast<OutType>(static_cast<U>(scale[j]) *
                                          (static_cast<U>(x[i]) - mean_val) *
                                          invvar +
                                      static_cast<U>(bias[j]));
        }
446 447 448 449
      }
    } else {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
450 451 452 453 454 455 456 457 458 459 460 461 462
        if (std::is_same<OutType, int8_t>::value) {
          y[i] = quant_helper(
              static_cast<T>(static_cast<U>(scale[j]) *
                             (static_cast<U>(x[i]) - mean_val) * invvar),
              quant_in_scale,
              quant_round_type,
              quant_max_bound,
              quant_min_bound);
        } else {
          y[i] =
              static_cast<OutType>(static_cast<U>(scale[j]) *
                                   (static_cast<U>(x[i]) - mean_val) * invvar);
        }
463 464 465 466 467 468
      }
    }
  } else {  // scale == nullptr
    if (bias != nullptr) {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
469 470 471 472 473 474 475 476 477 478 479 480 481
        if (std::is_same<OutType, int8_t>::value) {
          y[i] = quant_helper(
              static_cast<T>((static_cast<U>(x[i]) - mean_val) * invvar +
                             static_cast<U>(bias[j])),
              quant_in_scale,
              quant_round_type,
              quant_max_bound,
              quant_min_bound);
        } else {
          y[i] =
              static_cast<OutType>((static_cast<U>(x[i]) - mean_val) * invvar +
                                   static_cast<U>(bias[j]));
        }
482 483 484 485
      }
    } else {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
486 487 488 489 490 491 492 493 494 495 496
        if (std::is_same<OutType, int8_t>::value) {
          y[i] = quant_helper(
              static_cast<T>((static_cast<U>(x[i]) - mean_val) * invvar),
              quant_in_scale,
              quant_round_type,
              quant_max_bound,
              quant_min_bound);
        } else {
          y[i] =
              static_cast<OutType>((static_cast<U>(x[i]) - mean_val) * invvar);
        }
497 498 499 500 501 502
      }
    }
  }
}

template <typename T, typename U, int VPT>
503 504 505 506 507 508 509
__inline__ __device__ void cuLoadAddStridedInputs(const int64_t i1_block,
                                                  const int thr_load_row_off,
                                                  const int thr_load_col_off,
                                                  const int i2_off,
                                                  const int row_stride,
                                                  U *warp_buf1,
                                                  U *warp_buf2,
510 511
                                                  const T *__restrict__ input,
                                                  const T *__restrict__ dout,
512 513 514 515 516
                                                  const int64_t i1_end,
                                                  const int64_t n2,
                                                  const U *__restrict__ mean,
                                                  const U *__restrict__ var,
                                                  const float epsilon) {
517 518 519 520
  const int64_t i1 = i1_block + thr_load_row_off;
  if (i1 >= i1_end) return;
  U curr_mean = mean[i1];
  U curr_invvar = rsqrt_<U>(var[i1] + epsilon);
521
#pragma unroll
522 523 524 525 526 527 528 529 530 531 532 533 534 535
  for (int k = 0; k < VPT; ++k) {
    const int i2 = i2_off + k;
    const int64_t load_idx = i1 * n2 + i2;
    const int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
    if (i2 < n2) {
      U curr_input = static_cast<U>(input[load_idx]);
      U curr_dout = static_cast<U>(dout[load_idx]);
      warp_buf1[write_idx] += curr_dout;
      warp_buf2[write_idx] +=
          curr_dout * (curr_input - curr_mean) * curr_invvar;
    }
  }
}

536
#ifdef PADDLE_WITH_CUDA
537 538
template <bool IsFusedDropoutResidualLn,
          bool NeedDDropoutSrcPtr,
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
          typename T,
          typename U,
          typename ScaleT = U,
          typename MaskType = uint8_t,
          int VecSize = 8,
          int WARPS_M = 4,
          int WARPS_N = 1,
          int BYTES_PER_LDG = 16,
          int ELTS_PER_ROW = 1024,
          int THREADS_PER_WARP = 32,
          int THREADS_PER_ROW = WARPS_N *THREADS_PER_WARP,
          int THREADS_PER_CTA = WARPS_M *THREADS_PER_ROW,
          int ROWS_PER_CTA = WARPS_M,
          int ELTS_PER_ROW_PER_CTA = THREADS_PER_ROW *VecSize,
          int LDGS = ELTS_PER_ROW / ELTS_PER_ROW_PER_CTA>
554
__global__ __launch_bounds__(THREADS_PER_CTA) void fused_ln_bwd_fast_kernel(
555 556 557 558 559 560 561 562 563 564 565 566 567
    const int rows,
    float epsilon,
    const T *__restrict__ x_ptr,
    const ScaleT *__restrict__ gamma_ptr,
    const U *__restrict__ mean_ptr,
    const U *__restrict__ var_ptr,
    const T *__restrict__ dout_ptr,
    U *__restrict__ dgamma_temp_ptr,
    U *__restrict__ dbeta_temp_ptr,
    T *__restrict__ dx_ptr,
    const MaskType *mask_ptr = nullptr,
    T factor = static_cast<T>(0),
    T *d_dropout_src_ptr = nullptr) {
568 569 570 571
  static_assert(
      !IsFusedDropoutResidualLn || NeedDDropoutSrcPtr,
      "When IsFusedDropoutResidualLn = true, NeedDDropoutSrcPtr must be true.");

572 573 574
  using Vec = phi::AlignedVector<T, VecSize>;
  using Vec_scale = phi::AlignedVector<ScaleT, VecSize>;
  using MaskLoadT = phi::AlignedVector<MaskType, VecSize>;
575 576 577 578 579 580 581 582 583 584 585 586

  const int tidx = threadIdx.x;
  const int bidx = blockIdx.x;
  const int lane = tidx % THREADS_PER_WARP;            // 0, 1, ..., 31
  const int warp = tidx / THREADS_PER_WARP;            // 0, 1, 2, 3
  const int warp_m = warp / WARPS_N;                   // 0, 1, 2, 3
  const int warp_n = warp % WARPS_N;                   // 0
  const int tid_r = warp_n * THREADS_PER_WARP + lane;  // 0, 1, ..., 31

  const int r = bidx * ROWS_PER_CTA + warp_m;
  const int c = warp_n * THREADS_PER_WARP + lane;

587
  static_assert(ELTS_PER_ROW == THREADS_PER_ROW * LDGS * VecSize, "");
588 589

  // smem for column reduction
590
  __shared__ U smem_[ROWS_PER_CTA * ELTS_PER_ROW];
591 592 593 594 595 596 597 598 599 600 601 602 603 604

  U dgamma_sum[LDGS * VecSize];
  U dbeta_sum[LDGS * VecSize];

  memset(dgamma_sum, 0, sizeof(U) * LDGS * VecSize);
  memset(dbeta_sum, 0, sizeof(U) * LDGS * VecSize);

  // Note: it is no use for WARP_N = 1
  __shared__ U smem_sum_loss1[ROWS_PER_CTA * WARPS_N];  // 4
  __shared__ U smem_sum_loss2[ROWS_PER_CTA * WARPS_N];  // 4
  U *sum_loss1_shared = &smem_sum_loss1[warp_m * WARPS_N];
  U *sum_loss2_shared = &smem_sum_loss2[warp_m * WARPS_N];

  // step-1: compute dx and local results of dscale and dbias
605
  constexpr float rn = 1.f / static_cast<float>(ELTS_PER_ROW);
606 607 608 609
  Vec_scale gamma[LDGS];
  int col = c;
#pragma unroll
  for (int it = 0; it < LDGS; it++) {
610
    phi::Load<ScaleT, VecSize>(gamma_ptr + col * VecSize, &gamma[it]);
611 612 613 614 615 616 617 618 619 620 621 622
    col += THREADS_PER_ROW;
  }

#pragma unroll 1
  for (int row = r; row < rows; row += gridDim.x * ROWS_PER_CTA) {
    const U mean_cur_row = mean_ptr[row];
    const U var_cur_row = rsqrt_<U>(var_ptr[row] + epsilon);
    Vec dout[LDGS], x[LDGS];
    MaskLoadT mask_vec[LDGS];
    int col = c;
#pragma unroll
    for (int it = 0; it < LDGS; it++) {
623
      phi::Load<T, VecSize>(dout_ptr + row * ELTS_PER_ROW + col * VecSize,
624
                            &dout[it]);
625
      phi::Load<T, VecSize>(x_ptr + row * ELTS_PER_ROW + col * VecSize, &x[it]);
626
      if (IsFusedDropoutResidualLn) {
627
        phi::Load<MaskType, VecSize>(
628
            mask_ptr + row * ELTS_PER_ROW + col * VecSize, &mask_vec[it]);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
      }

      col += THREADS_PER_ROW;
    }

    // local reductions
    U dy[LDGS * VecSize];
    U y[LDGS * VecSize];

    U sum_loss1 = 0.f;
    U sum_loss2 = 0.f;
#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
644
        U x_tmp = static_cast<U>(x[it][jt]);
645 646
        U y_tmp = var_cur_row * (x_tmp - mean_cur_row);
        U dy_tmp = static_cast<U>(gamma[it][jt]) *
647 648
                   static_cast<U>(dout[it][jt]);    // scale * dy
        U dout_tmp = static_cast<U>(dout[it][jt]);  // dy
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

        // used for get dx (row reduction)
        sum_loss1 += dy_tmp;          // scale * dy, sum_1
        sum_loss2 += dy_tmp * y_tmp;  // scale * dy * y, sum_2

        dy[it * VecSize + jt] = dy_tmp;  // scale * dy
        y[it * VecSize + jt] = y_tmp;    // y

        // used for get dscale and dbias (column reduction)
        dgamma_sum[it * VecSize + jt] += dout_tmp * y_tmp;  // dy * y
        dbeta_sum[it * VecSize + jt] += dout_tmp;           // dy
      }
    }

    // reduction across row for sum_loss1, sum_loss2
    if (WARPS_N == 1) {
#pragma unroll
      // row reduction among 32 threads.
      for (int it = 1; it < THREADS_PER_WARP; it *= 2) {
        sum_loss1 += __shfl_xor_sync(uint32_t(-1), sum_loss1, it);
        sum_loss2 += __shfl_xor_sync(uint32_t(-1), sum_loss2, it);
      }
      sum_loss1 *= rn;
      sum_loss2 *= rn;
    } else {
#pragma unroll
      for (int it = 16; it > 0; it /= 2) {
        sum_loss1 += __shfl_down_sync(uint32_t(-1), sum_loss1, it);
        sum_loss2 += __shfl_down_sync(uint32_t(-1), sum_loss2, it);
      }

      if (lane == 0) {
        sum_loss1_shared[warp_n] = sum_loss1;
        sum_loss2_shared[warp_n] = sum_loss2;
      }

      __syncthreads();
      if (warp_n == 0 && lane == 0) {
        sum_loss1 = 0.f;
        sum_loss2 = 0.f;
        for (int it = 0; it < WARPS_N; it++) {
          sum_loss1 += sum_loss1_shared[it];
          sum_loss2 += sum_loss2_shared[it];
        }
        sum_loss1_shared[0] = sum_loss1;
        sum_loss2_shared[0] = sum_loss2;
      }
      __syncthreads();

      sum_loss1 = sum_loss1_shared[0] * rn;
      sum_loss2 = sum_loss2_shared[0] * rn;
    }

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        U dy_tmp = dy[it * VecSize + jt];  // scale * dy
        U y_tmp = y[it * VecSize + jt];    // y
        // dx = var * (scale * dy - sum_loss2 * y - sum_loss1)
        U dx_tmp = var_cur_row * (dy_tmp - sum_loss2 * y_tmp - sum_loss1);
        // Note: reuse x and dout vec register to store dx and d_dropout_src.
        x[it][jt] = static_cast<T>(dx_tmp);
712
        if (IsFusedDropoutResidualLn) {
713 714 715 716 717 718 719 720 721
          dout[it][jt] = x[it][jt] * static_cast<T>(mask_vec[it][jt]) * factor;
        }
      }
    }

    // store dx to global memory
    col = c;
#pragma unroll
    for (int it = 0; it < LDGS; it++) {
722 723
      phi::Store<T, VecSize>(x[it],
                             dx_ptr + row * ELTS_PER_ROW + col * VecSize);
724
      if (IsFusedDropoutResidualLn) {
725
        phi::Store<T, VecSize>(
726
            dout[it], d_dropout_src_ptr + row * ELTS_PER_ROW + col * VecSize);
727 728 729
      } else if (NeedDDropoutSrcPtr) {
        phi::Store<T, VecSize>(
            x[it], d_dropout_src_ptr + row * ELTS_PER_ROW + col * VecSize);
730 731 732 733 734 735 736
      }
      col += THREADS_PER_ROW;
    }
  }

  // step-2: column reduction of dscale and dbias for each thread block.
  // each block's sum: [4 * 1024] -> [1 * 1024]
737 738
  enum { NUM_RES = ELTS_PER_ROW / THREADS_PER_CTA };  // 1024/128 = 8
  static_assert(NUM_RES * THREADS_PER_CTA == ELTS_PER_ROW, "");
739 740 741

  U *smem_write;

742
  smem_write = &smem_[warp_m * ELTS_PER_ROW + tid_r * VecSize];  // [4 * 1024]
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
#pragma unroll
  for (int it = 0; it < LDGS; it++) {
#pragma unroll
    for (int jt = 0; jt < VecSize; jt++) {
      smem_write[jt] = dbeta_sum[it * VecSize + jt];
    }
    smem_write += THREADS_PER_ROW * VecSize;  // 32*8
  }
  __syncthreads();
  U cta_dbeta_sum[NUM_RES];
  memset(cta_dbeta_sum, 0, sizeof(U) * NUM_RES);
  // column reduction for elems in smem: 4*1024 -> 1*1024.
  for (int it = 0; it < ROWS_PER_CTA; it++) {
    for (int jt = 0; jt < NUM_RES; jt++) {
      cta_dbeta_sum[jt] +=
758
          smem_[it * ELTS_PER_ROW + tidx + jt * THREADS_PER_CTA];
759 760 761 762
    }
  }
  __syncthreads();

763
  smem_write = &smem_[warp_m * ELTS_PER_ROW + tid_r * VecSize];
764 765 766 767 768 769 770 771 772 773 774 775 776 777
#pragma unroll
  for (int it = 0; it < LDGS; it++) {
#pragma unroll
    for (int jt = 0; jt < VecSize; jt++) {
      smem_write[jt] = dgamma_sum[it * VecSize + jt];
    }
    smem_write += THREADS_PER_ROW * VecSize;
  }
  __syncthreads();
  U cta_dgamma_sum[NUM_RES];
  memset(cta_dgamma_sum, 0, sizeof(U) * NUM_RES);
  for (int it = 0; it < ROWS_PER_CTA; it++) {
    for (int jt = 0; jt < NUM_RES; jt++) {
      cta_dgamma_sum[jt] +=
778
          smem_[it * ELTS_PER_ROW + tidx + jt * THREADS_PER_CTA];
779 780 781 782 783
    }
  }

  // the shape of results:(#blocks, 1024)
  U *dgamma_part =
784
      static_cast<U *>(dgamma_temp_ptr) + bidx * ELTS_PER_ROW + tidx;
785 786 787 788 789
  for (int jt = 0; jt < NUM_RES; jt++) {
    *dgamma_part = cta_dgamma_sum[jt];
    dgamma_part += THREADS_PER_CTA;
  }

790
  U *dbeta_part = static_cast<U *>(dbeta_temp_ptr) + bidx * ELTS_PER_ROW + tidx;
791 792 793 794 795 796 797 798 799 800
  for (int jt = 0; jt < NUM_RES; jt++) {
    *dbeta_part = cta_dbeta_sum[jt];
    dbeta_part += THREADS_PER_CTA;
  }
}

/* This function carry out column reduction whose input is [rows, 1024] and
 * output is [1, 1024].
 * #blocks: 32
 * #threads: 512
801
 */
802
// todo(@limin29): to think if there are better impl strategies
803 804 805 806 807 808 809 810 811 812 813 814 815 816
template <typename U,
          typename ScaleT = U,
          int VecSize = 1,
          int WARPS_M = 16,
          int WARPS_N = 1,
          int BYTES_PER_LDG = 4,
          int ELTS_PER_ROW = 1024,
          int THREADS_PER_WARP = 32,
          int THREADS_PER_ROW = WARPS_N *THREADS_PER_WARP,
          int THREADS_PER_CTA = WARPS_M *THREADS_PER_ROW,
          int ROWS_PER_CTA = WARPS_M,
          int ELTS_PER_ROW_PER_CTA = THREADS_PER_ROW *VecSize,
          int LDGS = ELTS_PER_ROW / ELTS_PER_ROW_PER_CTA,
          int VEC_COLS = ELTS_PER_ROW / VecSize>
817
__global__ __launch_bounds__(THREADS_PER_CTA) void ln_bwd_fast_final_kernel(
818 819 820 821 822
    const int rows,
    U *__restrict__ dg_part_,
    U *__restrict__ db_part_,
    ScaleT *__restrict__ dg_,
    ScaleT *__restrict__ db_) {
823
  using Vec = phi::AlignedVector<U, VecSize>;
824
  static_assert(VEC_COLS == ELTS_PER_ROW / VecSize, "");
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

  const int tidx = threadIdx.x;
  const int bidx = blockIdx.x;
  const int lane = tidx % THREADS_PER_WARP;
  const int warp = tidx / THREADS_PER_WARP;
  const int warp_m = warp / WARPS_N;
  const int warp_n = warp % WARPS_N;
  const int tid_c = warp_n * THREADS_PER_WARP + lane;

  const int c = bidx * THREADS_PER_ROW + tid_c;
  const int r = warp_m;

  __shared__ U smem_space[(WARPS_M - 1) * THREADS_PER_ROW * VecSize];

  for (int col = c; col < VEC_COLS; col += gridDim.x * THREADS_PER_ROW) {
840 841
    const U *dg_part_ptr = (dg_part_) + r * ELTS_PER_ROW + col * VecSize;
    const U *db_part_ptr = (db_part_) + r * ELTS_PER_ROW + col * VecSize;
842 843 844 845 846 847 848 849 850

    U dg_sum[VecSize];
    U db_sum[VecSize];
    memset(dg_sum, 0, sizeof(U) * VecSize);
    memset(db_sum, 0, sizeof(U) * VecSize);
#pragma unroll
    for (int row = r; row < rows; row += ROWS_PER_CTA) {
      Vec dg;
      Vec db;
851 852
      phi::Load<U, VecSize>(dg_part_ptr, &dg);
      phi::Load<U, VecSize>(db_part_ptr, &db);
853 854
      dg_part_ptr += ROWS_PER_CTA * ELTS_PER_ROW;
      db_part_ptr += ROWS_PER_CTA * ELTS_PER_ROW;
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931

#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        dg_sum[jt] += dg[jt];
        db_sum[jt] += db[jt];
      }
    }

    // reduction across rows of the thread block
    U *smem_write;
    smem_write = smem_space + (warp_m - 1) * THREADS_PER_ROW * VecSize + tid_c;

    if (warp_m > 0) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        *smem_write = dg_sum[jt];
        smem_write += THREADS_PER_ROW;
      }
    }
    __syncthreads();

    U *smem_read;
    smem_read = smem_space + tid_c;
    if (warp_m == 0) {
#pragma unroll
      for (int it = 0; it < WARPS_M - 1; it++) {
#pragma unroll
        for (int jt = 0; jt < VecSize; jt++) {
          dg_sum[jt] += *smem_read;
          smem_read += THREADS_PER_ROW;
        }
      }
    }

    __syncthreads();

    smem_write = smem_space + (warp_m - 1) * THREADS_PER_ROW * VecSize + tid_c;

    if (warp_m > 0) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        *smem_write = db_sum[jt];
        smem_write += THREADS_PER_ROW;
      }
    }
    __syncthreads();

    smem_read = smem_space + tid_c;
    if (warp_m == 0) {
#pragma unroll
      for (int it = 0; it < WARPS_M - 1; it++) {
#pragma unroll
        for (int jt = 0; jt < VecSize; jt++) {
          db_sum[jt] += *smem_read;
          smem_read += THREADS_PER_ROW;
        }
      }

      union {
        ScaleT raw;
        ScaleT elt[VecSize];
      } dg_out, db_out;

#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        dg_out.elt[jt] = dg_sum[jt];
        db_out.elt[jt] = db_sum[jt];
      }
      ScaleT *dg_ptr = reinterpret_cast<ScaleT *>(dg_) + col;
      ScaleT *db_ptr = reinterpret_cast<ScaleT *>(db_) + col;
      *dg_ptr = dg_out.raw;
      *db_ptr = db_out.raw;
    }
  }
}

/* This function support two kinds of computations (only for float and fp16
932 933 934 935 936 937 938 939 940 941
 * type):
 *
 * Case-1: compute layer_norm_grad for layernorm op by setting mask_ptr and
 * d_dropout_src_ptr to nullptr. Here, d_x_ptr returns the grad of layernorm
 * input.
 *
 * Case-2: compute layer_norm_grad + residual_grad + dropout_grad for
 * fused_dropout_residual_layernorm op. Here, dx_ptr returns residual_grad.
 *
 */
942 943 944
template <typename T,
          typename U,
          typename ScaleT = U,
945
          typename MaskType = uint8_t>
946 947 948 949 950 951 952 953 954 955 956 957
void ln_bwd_fast_kernel_driver(const phi::GPUContext &dev_ctx,
                               const int rows,
                               const int cols,
                               float epsilon,
                               const T *x_ptr,
                               const ScaleT *scale_ptr,
                               const U *mean_ptr,
                               const U *var_ptr,
                               const T *dout_ptr,
                               T *dx_ptr,
                               ScaleT *dscale_ptr,
                               ScaleT *dbias_ptr,
H
hong 已提交
958 959 960
                               const MaskType *mask_ptr = nullptr,
                               T factor = static_cast<T>(0),
                               T *d_dropout_src_ptr = nullptr) {
961
  auto stream = dev_ctx.stream();
962
  if (cols == 1024 || cols == 384 || cols == 256) {
963
    // step-1: compute dx and reduced part results of dscale and dbias.
964 965
    const int WARPS_M = 4;  // how many rows delt in a cta.
    const int WARPS_N = 1;  // how many warps to deal with a row.
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
    const int BYTES_PER_LDG = 16;
    const int VecSize = BYTES_PER_LDG / sizeof(T);

    const int THREADS_PER_WARP = 32;
    const int THREADS_PER_ROW = WARPS_N * THREADS_PER_WARP;
    const int THREADS_PER_CTA = WARPS_M * THREADS_PER_ROW;
    const int ROWS_PER_CTA = WARPS_M;

    // 4 * 1024 * 4
    const int SMEM_BYTES = ROWS_PER_CTA * cols * sizeof(U);

    // #blocks = 2 * #SM
    const int gridx = 2 * dev_ctx.GetSMCount();

    // get temp space for dscale and dbias.
981
    phi::DenseTensor dscale_temp;
982
    dscale_temp.Resize({gridx, cols});
983
    dev_ctx.template Alloc<U>(&dscale_temp);
984 985
    U *dscale_temp_ptr = dscale_temp.data<U>();

986
    phi::DenseTensor dbias_temp;
987
    dbias_temp.Resize({gridx, cols});
988
    dev_ctx.template Alloc<U>(&dbias_temp);
989 990 991 992
    U *dbias_temp_ptr = dbias_temp.data<U>();

    if (mask_ptr != nullptr) {
      if (d_dropout_src_ptr == nullptr) {
993
        PADDLE_THROW(phi::errors::InvalidArgument(
994 995 996
            "To compute fused_dropout_residual_ln grad, d_dropout_src_ptr "
            "can't be null"));
      }
997 998
#define LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL(vec_size, ele_per_row) \
  fused_ln_bwd_fast_kernel<true,                                    \
999
                           true,                                    \
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
                           T,                                       \
                           U,                                       \
                           ScaleT,                                  \
                           MaskType,                                \
                           vec_size,                                \
                           WARPS_M,                                 \
                           WARPS_N,                                 \
                           BYTES_PER_LDG,                           \
                           ele_per_row>                             \
      <<<gridx, THREADS_PER_CTA, 0, stream>>>(rows,                 \
                                              epsilon,              \
                                              x_ptr,                \
                                              scale_ptr,            \
                                              mean_ptr,             \
                                              var_ptr,              \
                                              dout_ptr,             \
                                              dscale_temp_ptr,      \
                                              dbias_temp_ptr,       \
                                              dx_ptr,               \
                                              mask_ptr,             \
                                              factor,               \
                                              d_dropout_src_ptr);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

      if (cols == 1024) {
        LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL(VecSize, 1024);
      } else {
        switch (cols) {
          case 384:
            LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL(1, 384);
            break;
          case 256:
            LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL(VecSize, 256);
            break;
        }
      }
#undef LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL
1036 1037

    } else {
1038 1039
#define LAUNCH_FUSED_LN_BWD_FAST_KERNEL_BASE(                  \
    vec_size, ele_per_row, need_d_dropout_src_ptr)             \
1040
  fused_ln_bwd_fast_kernel<false,                              \
1041
                           need_d_dropout_src_ptr,             \
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
                           T,                                  \
                           U,                                  \
                           ScaleT,                             \
                           MaskType,                           \
                           vec_size,                           \
                           WARPS_M,                            \
                           WARPS_N,                            \
                           BYTES_PER_LDG,                      \
                           ele_per_row>                        \
      <<<gridx, THREADS_PER_CTA, 0, stream>>>(rows,            \
                                              epsilon,         \
                                              x_ptr,           \
                                              scale_ptr,       \
                                              mean_ptr,        \
                                              var_ptr,         \
                                              dout_ptr,        \
                                              dscale_temp_ptr, \
                                              dbias_temp_ptr,  \
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
                                              dx_ptr,          \
                                              nullptr,         \
                                              factor,          \
                                              d_dropout_src_ptr);

#define LAUNCH_FUSED_LN_BWD_FAST_KERNEL(vec_size, ele_per_row)            \
  do {                                                                    \
    if (d_dropout_src_ptr != nullptr) {                                   \
      LAUNCH_FUSED_LN_BWD_FAST_KERNEL_BASE(vec_size, ele_per_row, true);  \
    } else {                                                              \
      LAUNCH_FUSED_LN_BWD_FAST_KERNEL_BASE(vec_size, ele_per_row, false); \
    }                                                                     \
  } while (0)
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

      if (cols == 1024) {
        LAUNCH_FUSED_LN_BWD_FAST_KERNEL(VecSize, 1024);
      } else {
        switch (cols) {
          case 384:
            LAUNCH_FUSED_LN_BWD_FAST_KERNEL(1, 384);
            break;
          case 256:
            LAUNCH_FUSED_LN_BWD_FAST_KERNEL(VecSize, 256);
            break;
        }
      }

#undef LAUNCH_FUSED_LN_BWD_FAST_KERNEL
1088
    }
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    const int WARPS_M_2 = 16;
    const int WARPS_N_2 = 1;
    const int BYTES_PER_LDG_2 = 4;
    const int VecSize_2 =
        std::max(1, static_cast<int>(BYTES_PER_LDG_2 / sizeof(U)));  // 1

    const int THREADS_PER_WARP_2 = 32;
    const int THREADS_PER_ROW_2 = WARPS_N_2 * THREADS_PER_WARP_2;  // 32
    const int THREADS_PER_CTA_2 =
        WARPS_M_2 * THREADS_PER_ROW_2;     // 16 * 32 = 512
    const int ROWS_PER_CTA_2 = WARPS_M_2;  // 16

    // #blocks: 32,#threads_per_block: 512
    // Note: it is not supported for double type.
    if (sizeof(U) > 4) {
1105 1106
      PADDLE_THROW(
          phi::errors::InvalidArgument("Only support float and fp16 type"));
1107
    } else {
1108 1109 1110 1111 1112
      int gridx_2 = 0;

#define LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL(vec_size, ele_per_row)         \
  gridx_2 = static_cast<int>(std::ceil(                                 \
      ele_per_row / static_cast<float>(THREADS_PER_ROW_2 * vec_size))); \
1113 1114 1115 1116 1117 1118 1119
  ln_bwd_fast_final_kernel<U,                                           \
                           ScaleT,                                      \
                           vec_size,                                    \
                           WARPS_M_2,                                   \
                           WARPS_N_2,                                   \
                           BYTES_PER_LDG_2,                             \
                           ele_per_row>                                 \
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
      <<<gridx_2, THREADS_PER_CTA_2, 0, stream>>>(                      \
          gridx, dscale_temp_ptr, dbias_temp_ptr, dscale_ptr, dbias_ptr);

      if (cols == 1024) {
        LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL(VecSize_2, 1024);
      } else {
        switch (cols) {
          case 384:
            LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL(1, 384);
            break;
          case 256:
            LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL(VecSize_2, 256);
            break;
        }
      }

#undef LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL
1137 1138
    }
  } else {
1139
    PADDLE_THROW(phi::errors::InvalidArgument(
1140 1141 1142 1143 1144
        "Fast layer_norm kernel is only used when feature_size is 1024"));
  }
}
#endif

1145
template <typename T, typename U, int BDIMX, int BDIMY, int VPTX>
1146 1147 1148 1149 1150 1151 1152 1153 1154
__global__ void LayerNormBackwardPartGradGammaBeta(const T *__restrict__ dout,
                                                   const T *__restrict__ input,
                                                   const int64_t n1,
                                                   const int64_t n2,
                                                   const U *__restrict__ mean,
                                                   const U *__restrict__ var,
                                                   float epsilon,
                                                   U *part_grad_gamma,
                                                   U *part_grad_beta) {
1155 1156 1157 1158 1159 1160 1161 1162
  // VPTX -> value per thread.x, BDIMX -> blockDim.x,
  // BDIMY -> blockDim.y, template for compile time optimizations.
  constexpr int RowStride = BDIMX + 1;
  constexpr int BLOCK_SIZE = BDIMX * BDIMY;
  constexpr int VPTX_MUL_BDIMY = VPTX * BDIMY;
  constexpr int SharedSize = (BLOCK_SIZE > 2 * VPTX_MUL_BDIMY * RowStride)
                                 ? BLOCK_SIZE
                                 : 2 * VPTX_MUL_BDIMY * RowStride;
1163 1164 1165 1166 1167 1168

  const int thr_load_col_off = (threadIdx.x * VPTX) & (BDIMX - 1);
  const int thr_load_row_off =
      (threadIdx.x * VPTX) / BDIMX + threadIdx.y * BDIMY;
  const int i2_off = blockIdx.x * BDIMX + thr_load_col_off;

1169
  __shared__ U buf[SharedSize];
1170
  U *warp_buf1 = reinterpret_cast<U *>(buf);
1171
  U *warp_buf2 = warp_buf1 + VPTX_MUL_BDIMY * RowStride;
1172

1173 1174 1175
  for (int idx = threadIdx.y * BDIMX + threadIdx.x;
       idx < 2 * VPTX_MUL_BDIMY * RowStride;
       idx += BLOCK_SIZE) {
1176 1177 1178 1179 1180
    buf[idx] = U(0);
  }
  __syncthreads();

  for (int64_t i1_block = blockIdx.y * BDIMY * VPTX; i1_block < n1;
1181
       i1_block += VPTX_MUL_BDIMY * gridDim.y) {
1182 1183 1184 1185
    cuLoadAddStridedInputs<T, U, VPTX>(i1_block,
                                       thr_load_row_off,
                                       thr_load_col_off,
                                       i2_off,
1186
                                       RowStride,
1187 1188 1189 1190 1191 1192 1193 1194 1195
                                       warp_buf1,
                                       warp_buf2,
                                       input,
                                       dout,
                                       n1,
                                       n2,
                                       mean,
                                       var,
                                       epsilon);
1196 1197 1198
  }
  __syncthreads();

1199
  // inter-warp reductions, sum within each warp
1200 1201
  U acc1 = U(0);
  U acc2 = U(0);
1202
#pragma unroll
1203 1204
  for (int k = 0; k < VPTX; ++k) {
    int row1 = threadIdx.y + k * VPTX;
1205
    int idx1 = row1 * RowStride + threadIdx.x;
1206 1207 1208
    acc1 += warp_buf1[idx1];
    acc2 += warp_buf2[idx1];
  }
1209 1210
  warp_buf1[threadIdx.y * RowStride + threadIdx.x] = acc1;
  warp_buf2[threadIdx.y * RowStride + threadIdx.x] = acc2;
1211
  __syncthreads();
1212

1213
  // sum all warps
1214
#pragma unroll
1215 1216 1217 1218
  for (int offset = VPTX >> 1; offset > 1; offset >>= 1) {
    if (threadIdx.y < offset) {
      int row1 = threadIdx.y;
      int row2 = threadIdx.y + offset;
1219 1220
      int idx1 = row1 * RowStride + threadIdx.x;
      int idx2 = row2 * RowStride + threadIdx.x;
1221 1222 1223 1224 1225
      warp_buf1[idx1] += warp_buf1[idx2];
      warp_buf2[idx1] += warp_buf2[idx2];
    }
    __syncthreads();
  }
1226
  int64_t i2 = blockIdx.x * BDIMX + threadIdx.x;
1227 1228 1229
  if (threadIdx.y == 0 && i2 < n2) {
    int row1 = threadIdx.y;
    int row2 = threadIdx.y + 1;
1230 1231
    int idx1 = row1 * RowStride + threadIdx.x;
    int idx2 = row2 * RowStride + threadIdx.x;
1232 1233 1234 1235 1236
    part_grad_beta[blockIdx.y * n2 + i2] = warp_buf1[idx1] + warp_buf1[idx2];
    part_grad_gamma[blockIdx.y * n2 + i2] = warp_buf2[idx1] + warp_buf2[idx2];
  }
}

1237 1238 1239 1240 1241 1242 1243 1244
template <typename T, typename U, int BDIMX, int BDIMY, typename ScaleT>
__global__ void LayerNormBackwardSumGradGammaBeta(const U *part_grad_gamma,
                                                  const U *part_grad_beta,
                                                  const int part_size,
                                                  const int n1,
                                                  const int n2,
                                                  ScaleT *grad_gamma,
                                                  ScaleT *grad_beta) {
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
  // sum partial gradients for gamma and beta
  __shared__ U buf[BDIMX * BDIMY];
  int64_t i2 = blockIdx.x * BDIMX + threadIdx.x;
  if (i2 < n2) {
    // each warp does sequential reductions until reduced part_size is num_warps
    int num_warp_reductions = part_size / BDIMY;
    U sum_gamma = U(0);
    U sum_beta = U(0);
    const U *part_grad_gamma_ptr =
        part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
    const U *part_grad_beta_ptr =
        part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
    for (int warp_offset = 0; warp_offset < num_warp_reductions;
         ++warp_offset) {
      sum_gamma += part_grad_gamma_ptr[warp_offset * n2];
      sum_beta += part_grad_beta_ptr[warp_offset * n2];
    }
    // inter-warp reductions
    constexpr int nbsize3 = BDIMX * BDIMY / 2;
    for (int offset = BDIMY / 2; offset >= 1; offset /= 2) {
      // top half write to shared memory
      if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
        const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
        buf[write_idx] = sum_gamma;
        buf[write_idx + nbsize3] = sum_beta;
      }
      __syncthreads();
      // bottom half sums
      if (threadIdx.y < offset) {
        const int read_idx = threadIdx.y * BDIMX + threadIdx.x;
        sum_gamma += buf[read_idx];
        sum_beta += buf[read_idx + nbsize3];
      }
      __syncthreads();
    }
    // write out fully summed gradients
    if (threadIdx.y == 0) {
1282 1283
      grad_gamma[i2] = static_cast<ScaleT>(sum_gamma);
      grad_beta[i2] = static_cast<ScaleT>(sum_beta);
1284 1285 1286 1287
    }
  }
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
template <typename T, typename U, int BDIMX, int BDIMY, typename ScaleT>
__global__ void LayerNormBackwardComputeGradInput(const T *__restrict__ dout,
                                                  const T *__restrict__ input,
                                                  const int n1,
                                                  const int n2,
                                                  const U *__restrict__ mean,
                                                  const U *__restrict__ var,
                                                  const float epsilon,
                                                  const ScaleT *gamma,
                                                  T *grad_input) {
1298
#ifdef __HIPCC__
1299
  for (int64_t i1 = hipBlockIdx_x; i1 < n1; i1 += hipGridDim_x) {
1300
#else
1301
  for (int64_t i1 = blockIdx.x; i1 < n1; i1 += gridDim.x) {
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
#endif
    U sum_loss1 = U(0);
    U sum_loss2 = U(0);
    const U c_mean = mean[i1];
    const U c_invvar = rsqrt_<U>(var[i1] + epsilon);
    const T *k_input = input + i1 * n2;
    const T *k_dout = dout + i1 * n2;
    constexpr int numx = BDIMX * BDIMY;
    const int thrx = threadIdx.x + threadIdx.y * BDIMX;
    if (gamma != NULL) {
      int l = 4 * thrx;
      for (; l + 3 < n2; l += 4 * numx) {
        for (int k = 0; k < 4; ++k) {
          const U c_h = static_cast<U>(k_input[l + k]);
          const U c_loss = static_cast<U>(k_dout[l + k]);
1317 1318 1319
          sum_loss1 += c_loss * static_cast<U>(gamma[l + k]);
          sum_loss2 +=
              c_loss * static_cast<U>(gamma[l + k]) * (c_h - c_mean) * c_invvar;
1320 1321 1322 1323 1324
        }
      }
      for (; l < n2; ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
1325 1326 1327
        sum_loss1 += c_loss * static_cast<U>(gamma[l]);
        sum_loss2 +=
            c_loss * static_cast<U>(gamma[l]) * (c_h - c_mean) * c_invvar;
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
      }
    } else {
      int l = 4 * thrx;
      for (; l + 3 < n2; l += 4 * numx) {
        for (int k = 0; k < 4; ++k) {
          const U c_h = static_cast<U>(k_input[l + k]);
          const U c_loss = static_cast<U>(k_dout[l + k]);
          sum_loss1 += c_loss;
          sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
        }
      }
      for (; l < n2; ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        sum_loss1 += c_loss;
        sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
      }
    }
    // intra-warp reductions
1347
#pragma unroll
1348 1349
    for (int mask = BDIMX / 2; mask > 0; mask /= 2) {
#ifdef PADDLE_WITH_HIP
1350 1351 1352
      // WARP_SHFL_XOR(sum_loss, mask);
      sum_loss1 += __shfl_xor(sum_loss1, mask, warpSize);
      sum_loss2 += __shfl_xor(sum_loss2, mask, warpSize);
1353
#else
1354 1355 1356
      // WARP_SHFL_XOR(sum_loss, mask);
      sum_loss1 += __shfl_xor_sync(0xffffffff, sum_loss1, mask, warpSize);
      sum_loss2 += __shfl_xor_sync(0xffffffff, sum_loss2, mask, warpSize);
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
#endif
    }
    // inter-warp reductions
    if (BDIMY > 1) {
      __shared__ U buf[BDIMX * BDIMY];
      for (int offset = BDIMY / 2; offset > 0; offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
          const int wrt_i = (threadIdx.y - offset) * BDIMX + threadIdx.x;
          buf[2 * wrt_i] = sum_loss1;
          buf[2 * wrt_i + 1] = sum_loss2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.y < offset) {
          const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
          sum_loss1 += buf[2 * read_i];
          sum_loss2 += buf[2 * read_i + 1];
        }
        __syncthreads();
      }
      if (threadIdx.y == 0) {
        buf[2 * threadIdx.x] = sum_loss1;
        buf[2 * threadIdx.x + 1] = sum_loss2;
      }
      __syncthreads();
      if (threadIdx.y != 0) {
        sum_loss1 = buf[2 * threadIdx.x];
        sum_loss2 = buf[2 * threadIdx.x + 1];
      }
    }
    // all threads now have the two sums over l
    U fH = (U)n2;
    U term1 = (U(1) / fH) * c_invvar;
    T *k_grad_input = grad_input + i1 * n2;
    if (gamma != NULL) {
      for (int l = thrx; l < n2; l += numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
1396
        U f_grad_input = fH * c_loss * static_cast<U>(gamma[l]);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    } else {
      for (int l = thrx; l < n2; l += numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss;
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    }
  }
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
template <typename T, typename U, typename ScaleT, int DataPerTid>
__global__ void LayerNormBackwardComputeGradInputWithSmallFeatureSize(
    const T *__restrict__ dout,
    const T *__restrict__ input,
    const int n1,
    const int n2,
    const U *__restrict__ mean,
    const U *__restrict__ var,
    const float epsilon,
    const ScaleT *__restrict__ gamma,
    T *grad_input) {
  constexpr int WarpSize = 32;
#ifdef __HIPCC__
  for (int64_t bid = hipBlockIdx_x; bid < n1; bid += hipGridDim_x) {
#else
  for (int64_t bid = blockIdx.x; bid < n1; bid += gridDim.x) {
#endif
    U sum_loss1 = U(0);
    U sum_loss2 = U(0);
    const U c_mean = mean[bid];
    const U c_invvar = rsqrt_<U>(var[bid] + epsilon);

    const int main_vec_n2 = n2 / DataPerTid;
    const int tid_num = WarpSize * blockDim.y;
    const int thrx = threadIdx.x + threadIdx.y * WarpSize;

    // One feature-size per block.
    const T *__restrict__ k_dout = dout + bid * n2;
    const T *__restrict__ k_input = input + bid * n2;
    T *k_grad_input = grad_input + bid * n2;

    // Data storage location in local register.
    using VecT = phi::AlignedVector<T, DataPerTid>;
    using VecScaleT = phi::AlignedVector<ScaleT, DataPerTid>;

    const VecT *__restrict__ v_k_dout =
        reinterpret_cast<const VecT *__restrict__>(k_dout);
    const VecT *__restrict__ v_k_input =
        reinterpret_cast<const VecT *__restrict__>(k_input);
    const VecScaleT *__restrict__ v_gamma =
        reinterpret_cast<const VecScaleT *__restrict__>(gamma);
    VecT *v_grad = reinterpret_cast<VecT *>(k_grad_input);

    // Each thread shall deal with no more than 8 data.
    U dout_data[8];
    U input_data[8];
    U gamma_data[8];

    if (gamma != NULL) {
      int tid = thrx;
      for (int i = 0; tid < main_vec_n2; tid += tid_num, ++i) {
        VecT v_tmp_dout = v_k_dout[tid];
        VecT v_tmp_input = v_k_input[tid];
        VecScaleT v_tmp_gamma = v_gamma[tid];
#pragma unroll
        for (int k = 0; k < DataPerTid; ++k) {
          const int idx = k + i * DataPerTid;
          dout_data[idx] = static_cast<U>(v_tmp_dout[k]);
          input_data[idx] = static_cast<U>(v_tmp_input[k]);
          gamma_data[idx] = static_cast<U>(v_tmp_gamma[k]);
          sum_loss1 += dout_data[idx] * gamma_data[idx];
          sum_loss2 += dout_data[idx] * gamma_data[idx] *
                       (input_data[idx] - c_mean) * c_invvar;
        }
      }
    } else {
      int tid = thrx;
      for (int i = 0; tid < main_vec_n2; tid += tid_num, ++i) {
        VecT v_tmp_dout = v_k_dout[tid];
        VecT v_tmp_input = v_k_input[tid];
#pragma unroll
        for (int k = 0; k < DataPerTid; ++k) {
          const int idx = k + i * DataPerTid;
          dout_data[idx] = static_cast<U>(v_tmp_dout[k]);
          input_data[idx] = static_cast<U>(v_tmp_input[k]);
          sum_loss1 += dout_data[idx];
          sum_loss2 += dout_data[idx] * (input_data[idx] - c_mean) * c_invvar;
        }
      }
    }

    // intra-warp reductions
#pragma unroll
    for (int mask = WarpSize / 2; mask > 0; mask /= 2) {
#ifdef PADDLE_WITH_HIP
      // WARP_SHFL_XOR(sum_loss, mask);
      sum_loss1 += __shfl_xor(sum_loss1, mask, warpSize);
      sum_loss2 += __shfl_xor(sum_loss2, mask, warpSize);
#else
      // WARP_SHFL_XOR(sum_loss, mask);
      sum_loss1 += __shfl_xor_sync(0xffffffff, sum_loss1, mask, WarpSize);
      sum_loss2 += __shfl_xor_sync(0xffffffff, sum_loss2, mask, WarpSize);
#endif
    }

    // inter-warp reductions
    if (blockDim.y > 1) {
      __shared__ U buf[512];
      for (int offset = blockDim.y / 2; offset > 0; offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
          const int wrt_i = (threadIdx.y - offset) * WarpSize + threadIdx.x;
          buf[2 * wrt_i] = sum_loss1;
          buf[2 * wrt_i + 1] = sum_loss2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.y < offset) {
          const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
          sum_loss1 += buf[2 * read_i];
          sum_loss2 += buf[2 * read_i + 1];
        }
        __syncthreads();
      }
      if (threadIdx.y == 0) {
        buf[2 * threadIdx.x] = sum_loss1;
        buf[2 * threadIdx.x + 1] = sum_loss2;
      }
      __syncthreads();
      if (threadIdx.y != 0) {
        sum_loss1 = buf[2 * threadIdx.x];
        sum_loss2 = buf[2 * threadIdx.x + 1];
      }
    }

    U fH = static_cast<U>(n2);
    U ratio_term = (static_cast<U>(1) / fH) * c_invvar;
    if (gamma != NULL) {
      int tid = thrx;
      for (int i = 0; tid < main_vec_n2; tid += tid_num, ++i) {
        VecT temp_grad;
#pragma unroll
        for (int k = 0; k < DataPerTid; ++k) {
          const int idx = i * DataPerTid + k;
          const U c_h = input_data[idx];
          const U c_loss = dout_data[idx];
          U f_grad_input = fH * c_loss * gamma_data[idx] - sum_loss1;
          f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
          temp_grad[k] = static_cast<T>(f_grad_input * ratio_term);
        }
        v_grad[tid] = temp_grad;
      }
    } else {
      int tid = thrx;
      for (int i = 0; tid < main_vec_n2; tid += tid_num, ++i) {
        VecT temp_grad;
#pragma unroll
        for (int k = 0; k < DataPerTid; ++k) {
          const int idx = i * DataPerTid + k;
          const U c_h = input_data[idx];
          const U c_loss = dout_data[idx];
          U f_grad_input = fH * c_loss - sum_loss1;
          f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
          temp_grad[k] = static_cast<T>(f_grad_input * ratio_term);
        }
        v_grad[tid] = temp_grad;
      }
    }
  }
}

1577 1578
// Make sure that d_scale != nullptr && d_bias != nullptr
// Since d_scale != nullptr, scale would not be nullptr
1579 1580 1581 1582
template <typename T,
          typename U,
          int BlockDim,
          bool HasDx,
1583
          bool ScaleBiasWithSameTypeX>
1584
__global__ void LayerNormBackwardGradientAll(
1585 1586
    const T *x,
    const T *d_y,
1587
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
1588 1589 1590 1591
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias,
    T *d_x,
    const U *mean,
    const U *var,
1592
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
1593 1594 1595
    float epsilon,
    int64_t batch_size,
    int64_t feature_size,
1596 1597
    int64_t col_offset) {
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
  int64_t beg_idx = threadIdx.x * feature_size + (blockIdx.x + col_offset);
  int64_t end_idx = batch_size * feature_size + (blockIdx.x + col_offset);
  int64_t stride = BlockDim * feature_size;

  U d_scale_partial = static_cast<U>(0), d_bias_partial = static_cast<U>(0);

  for (int64_t i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
    auto var_val = real_sqrt(static_cast<U>(var[row_idx]) + epsilon);
    d_scale_partial += static_cast<U>(d_y[i]) *
                       (static_cast<U>(x[i]) - mean[row_idx]) / var_val;
    d_bias_partial += static_cast<U>(d_y[i]);
    if (HasDx) {
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
1612 1613
                              static_cast<U>(scale[blockIdx.x + col_offset]) /
                              var_val);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    }
  }

  __shared__ U shared_scale[32];  // threadIdx.x / warpSize <= kMaxBlockDim /
                                  // warpSize <= 1024/32 = 32;
  __shared__ U shared_bias[32];
  d_scale_partial = BlockReduceSum<U>(d_scale_partial, shared_scale);
  d_bias_partial = BlockReduceSum<U>(d_bias_partial, shared_bias);

  if (threadIdx.x == 0) {
1624 1625
    d_scale[blockIdx.x + col_offset] = static_cast<ScaleBiasT>(d_scale_partial);
    d_bias[blockIdx.x + col_offset] = static_cast<ScaleBiasT>(d_bias_partial);
1626 1627 1628 1629 1630 1631
  }
}

// Make sure that there is only one true expression: d_scale != nullptr
// or d_bias != nullptr
// Notice: scale may be nullptr
1632 1633 1634 1635 1636
template <typename T,
          typename U,
          int BlockDim,
          bool HasDx,
          bool HasDScale,
1637
          bool ScaleBiasWithSameTypeX>
1638
__global__ void LayerNormBackwardGradientScaleOrBias(
1639 1640
    const T *x,
    const T *d_y,
1641
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
1642 1643 1644 1645
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias,
    T *d_x,
    const U *mean,
    const U *var,
1646
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
1647 1648 1649 1650
    float epsilon,
    int64_t batch_size,
    int64_t feature_size,
    int col_offset) {
1651
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
  using BlockReduce = cub::BlockReduce<U, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int64_t beg_idx = threadIdx.x * feature_size + blockIdx.x + col_offset;
  int64_t end_idx = batch_size * feature_size + blockIdx.x + col_offset;
  int stride = BlockDim * feature_size;
  U d_scale_or_d_bias_partial = static_cast<U>(0);

  for (int64_t i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
    auto var_val =
        static_cast<U>(real_sqrt(static_cast<float>(var[row_idx]) + epsilon));
    if (HasDScale) {
      d_scale_or_d_bias_partial += static_cast<U>(d_y[i]) *
                                   (static_cast<U>(x[i]) - mean[row_idx]) /
                                   var_val;
    } else {  // d_bias != nullptr
      d_scale_or_d_bias_partial += static_cast<U>(d_y[i]);
    }

    if (HasDx) {
      if (scale != nullptr) {
        d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
1674 1675
                                static_cast<U>(scale[blockIdx.x + col_offset]) /
                                var_val);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
      } else {
        d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) / var_val);
      }
    }
  }

  d_scale_or_d_bias_partial =
      BlockReduce(temp_storage).Reduce(d_scale_or_d_bias_partial, cub::Sum());

  if (threadIdx.x == 0) {
    if (HasDScale) {
1687 1688
      d_scale[blockIdx.x + col_offset] =
          static_cast<ScaleBiasT>(d_scale_or_d_bias_partial);
1689
    } else {
1690 1691
      d_bias[blockIdx.x + col_offset] =
          static_cast<ScaleBiasT>(d_scale_or_d_bias_partial);
1692 1693 1694 1695 1696 1697
    }
  }
}

template <typename T, typename U, int BlockDim>
__global__ void LayerNormBackwardPostProcessToCalculateDX(
1698 1699 1700 1701 1702
    const T *x,
    T *d_x,
    const U *mean,
    const U *var,
    float epsilon,
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    int64_t feature_size) {
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ U d_x_reduce_tmp[2];

  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;

  U block_mean = mean[blockIdx.x];
  U block_var = var[blockIdx.x];
  U d_x_mean_partial = static_cast<U>(0), d_x_var_partial = static_cast<U>(0);
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    d_x_mean_partial += static_cast<U>(d_x[i]);
    d_x_var_partial +=
        static_cast<U>(d_x[i]) * (static_cast<U>(x[i]) - block_mean);
  }

  auto pair =
      BlockReduce(temp_storage)
          .Reduce(PairForLayerNorm<U>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<U>());

  if (threadIdx.x == 0) {
    d_x_reduce_tmp[0] = static_cast<float>(pair.first_) / feature_size;
    d_x_reduce_tmp[1] =
        static_cast<float>(pair.second_) /
        (feature_size * (static_cast<float>(block_var) + epsilon));
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    d_x[i] -= static_cast<T>(d_x_mean_partial);
    d_x[i] -=
        static_cast<T>((static_cast<U>(x[i]) - block_mean) * d_x_var_partial);
  }
}

// Here, we only calculate d_x
1743 1744
template <typename T, typename U, int BlockDim, bool ScaleBiasWithSameTypeX>
__global__ void LayerNormBackwardGradientOnlyDX(
1745 1746 1747 1748 1749
    const T *x,
    const T *d_y,
    T *d_x,
    const U *mean,
    const U *var,
1750
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
1751 1752
    float epsilon,
    int64_t feature_size) {
1753
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ U d_x_reduce_tmp[2];

  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;

  U block_mean = mean[blockIdx.x], block_var = var[blockIdx.x];
  U d_x_mean_partial = static_cast<U>(0), d_x_var_partial = static_cast<U>(0);
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    auto var_val =
        static_cast<U>(real_sqrt(static_cast<float>(block_var) + epsilon));
    if (scale != nullptr) {
      int col_idx = i % feature_size;
1768 1769
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
                              static_cast<U>(scale[col_idx]) / var_val);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
    } else {
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) / var_val);
    }
    d_x_mean_partial += static_cast<U>(d_x[i]);
    d_x_var_partial +=
        static_cast<U>(d_x[i]) * (static_cast<U>(x[i]) - block_mean);
  }

  auto pair =
      BlockReduce(temp_storage)
          .Reduce(PairForLayerNorm<U>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<U>());

  if (threadIdx.x == 0) {
    d_x_reduce_tmp[0] = static_cast<float>(pair.first_) / feature_size;
    d_x_reduce_tmp[1] =
        static_cast<float>(pair.second_) /
        (feature_size * (static_cast<float>(block_var) + epsilon));
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    d_x[i] -= static_cast<T>(d_x_mean_partial);
    d_x[i] -=
        static_cast<T>((static_cast<U>(x[i]) - block_mean) * d_x_var_partial);
  }
}

1800
template <typename T, typename U, bool ScaleBiasWithSameTypeX>
1801
__global__ void LayerNormBackwardWhenBatchSizeIsOne(
1802 1803 1804
    const T *x,
    const T *d_y,
    T *d_x,
1805
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
1806 1807
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias,
    const U *mean,
1808 1809
    const U *var,
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
1810 1811
    float epsilon,
    int64_t feature_size) {
1812
  int64_t idx = threadIdx.x + blockIdx.x * blockDim.x;
1813
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1814 1815
  if (idx < feature_size) {
    auto var_val =
1816
        static_cast<U>(real_sqrt(static_cast<float>(var[0]) + epsilon));
1817 1818 1819 1820
    if (d_x != nullptr) {
      if (d_scale == nullptr) {
        d_x[idx] = static_cast<T>(static_cast<U>(d_y[idx]) / var_val);
      } else {
1821 1822
        d_x[idx] = static_cast<T>(static_cast<U>(d_y[idx]) *
                                  static_cast<U>(scale[idx]) / var_val);
1823 1824 1825 1826
      }
    }

    if (d_scale != nullptr) {
1827 1828 1829
      d_scale[idx] =
          static_cast<ScaleBiasT>(static_cast<U>(d_y[idx]) *
                                  (static_cast<U>(x[idx]) - mean[0]) / var_val);
1830 1831
    }

1832 1833 1834
    if (d_bias != nullptr) {
      d_bias[idx] = static_cast<ScaleBiasT>(d_y[idx]);
    }
1835 1836 1837
  }
}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
inline int VecSizeJudgeForeGradInput(const int feature_size,
                                     const int vec_size) {
  if (!(feature_size & (vec_size - 1))) {
    return vec_size;
  } else if (vec_size == 4) {
    if (!(feature_size & 1)) {
      return 2;
    }
  }
  return 1;
}

1850 1851
template <typename T, typename U, bool ScaleBiasWithSameTypeX = false>
static void LayerNormBackward(
1852 1853
    const T *x,
    const T *d_y,
1854
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
1855 1856 1857
    const U *mean,
    const U *var,
    T *d_x,
1858
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
1859 1860 1861 1862 1863
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias,
    float epsilon,
    int64_t batch_size,
    int64_t feature_size,
    const phi::GPUContext &dev_ctx) {
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
  auto stream = dev_ctx.stream();
#ifdef __HIPCC__
  const int kMaxBlockDim = 256;
#else
  const int kMaxBlockDim = 512;
#endif
  const int kMaxBlockNum = 128;
  int gradient_flag = ((d_x != nullptr ? 1 : 0) << 2) |
                      ((d_scale != nullptr ? 1 : 0) << 1) |
                      ((d_bias != nullptr ? 1 : 0));
  if (gradient_flag == 0) return;

  if (batch_size == 1) {
1877
    LayerNormBackwardWhenBatchSizeIsOne<T, U, ScaleBiasWithSameTypeX>
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
        <<<(feature_size + kMaxBlockDim - 1) / kMaxBlockDim,
           kMaxBlockDim,
           0,
           stream>>>(x,
                     d_y,
                     d_x,
                     d_scale,
                     d_bias,
                     mean,
                     var,
                     scale,
                     epsilon,
1890
                     feature_size);
1891 1892 1893

    if (d_x != nullptr) {
      switch (GetDesiredBlockDim(feature_size)) {
1894 1895
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<T, U, kBlockDim>
1896 1897
            <<<1, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
      }
    }
    return;
  }

  auto block_dim = GetDesiredBlockDim(batch_size);
  switch (gradient_flag) {
    case 1:  // d_x == nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
1908 1909 1910 1911 1912 1913 1914
            feature_size,
            kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<T,
                                                 U,
                                                 kBlockDim,
                                                 false,
                                                 false,
1915
                                                 ScaleBiasWithSameTypeX>
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
            <<<block_num, kBlockDim, 0, stream>>>(x,
                                                  d_y,
                                                  d_scale,
                                                  d_bias,
                                                  d_x,
                                                  mean,
                                                  var,
                                                  scale,
                                                  epsilon,
                                                  batch_size,
                                                  feature_size,
                                                  col_offset));
1928 1929 1930 1931 1932
      }
      break;
    case 2:  // d_x == nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
1933 1934 1935 1936 1937 1938 1939
            feature_size,
            kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<T,
                                                 U,
                                                 kBlockDim,
                                                 false,
                                                 true,
1940
                                                 ScaleBiasWithSameTypeX>
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
            <<<block_num, kBlockDim, 0, stream>>>(x,
                                                  d_y,
                                                  d_scale,
                                                  d_bias,
                                                  d_x,
                                                  mean,
                                                  var,
                                                  scale,
                                                  epsilon,
                                                  batch_size,
                                                  feature_size,
                                                  col_offset));
1953 1954 1955 1956 1957
      }
      break;
    case 3:  // d_x == nullptr, d_scale != nulptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
1958 1959 1960 1961 1962 1963
            feature_size,
            kMaxBlockNum,
            LayerNormBackwardGradientAll<T,
                                         U,
                                         kBlockDim,
                                         false,
1964
                                         ScaleBiasWithSameTypeX>
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
            <<<block_num, kBlockDim, 0, stream>>>(x,
                                                  d_y,
                                                  d_scale,
                                                  d_bias,
                                                  d_x,
                                                  mean,
                                                  var,
                                                  scale,
                                                  epsilon,
                                                  batch_size,
                                                  feature_size,
                                                  col_offset));
1977 1978 1979 1980 1981
      }
      break;
    case 4:  // d_x != nullptr, d_scale == nullptr, d_bias == nullptr
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
1982 1983 1984
            LayerNormBackwardGradientOnlyDX<T,
                                            U,
                                            kBlockDim,
1985 1986
                                            ScaleBiasWithSameTypeX>
            <<<batch_size, kBlockDim, 0, stream>>>(
1987 1988 1989 1990 1991 1992
                x, d_y, d_x, mean, var, scale, epsilon, feature_size));
      }
      break;
    case 5:  // d_x != nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
1993 1994 1995 1996 1997 1998 1999
            feature_size,
            kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<T,
                                                 U,
                                                 kBlockDim,
                                                 true,
                                                 false,
2000
                                                 ScaleBiasWithSameTypeX>
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
            <<<block_num, kBlockDim, 0, stream>>>(x,
                                                  d_y,
                                                  d_scale,
                                                  d_bias,
                                                  d_x,
                                                  mean,
                                                  var,
                                                  scale,
                                                  epsilon,
                                                  batch_size,
                                                  feature_size,
                                                  col_offset));
2013 2014 2015
      }
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
2016
            LayerNormBackwardPostProcessToCalculateDX<T, U, kBlockDim>
2017 2018
            <<<batch_size, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
2019 2020 2021 2022 2023
      }
      break;
    case 6:  // d_x != nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
2024 2025 2026 2027 2028 2029 2030
            feature_size,
            kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<T,
                                                 U,
                                                 kBlockDim,
                                                 true,
                                                 true,
2031
                                                 ScaleBiasWithSameTypeX>
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
            <<<block_num, kBlockDim, 0, stream>>>(x,
                                                  d_y,
                                                  d_scale,
                                                  d_bias,
                                                  d_x,
                                                  mean,
                                                  var,
                                                  scale,
                                                  epsilon,
                                                  batch_size,
                                                  feature_size,
                                                  col_offset));
2044 2045 2046
      }
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
2047
            LayerNormBackwardPostProcessToCalculateDX<T, U, kBlockDim>
2048 2049
            <<<batch_size, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
2050 2051 2052 2053
      }
      break;
    case 7:  // d_x != nullptr, d_scale != nullptr, d_bias != nullptr
    {
2054
#ifdef PADDLE_WITH_CUDA
2055
      bool can_call_fast_kernel = false;
2056
      // todo: rule out double type.
2057 2058 2059 2060
      if ((feature_size == 1024 || feature_size == 384 ||
           feature_size == 256) &&
          sizeof(T) <= 4) {
        can_call_fast_kernel = true;
2061 2062
      }

2063 2064 2065
      VLOG(6) << "can_call_fast_kernel = " << can_call_fast_kernel;
      if (can_call_fast_kernel) {
        ln_bwd_fast_kernel_driver<
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
            T,
            U,
            LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>>(dev_ctx,
                                                               batch_size,
                                                               feature_size,
                                                               epsilon,
                                                               x,
                                                               scale,
                                                               mean,
                                                               var,
                                                               d_y,
                                                               d_x,
                                                               d_scale,
                                                               d_bias);
2080 2081
      } else {
#endif
2082 2083 2084
        using ScaleT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
        constexpr int BDIMX = 32;

2085
        constexpr int VPT = 4;
2086 2087 2088 2089
        constexpr int BDIMY1 = 4;
        constexpr int PartSize = BDIMY1 * VPT;
        dim3 threads2(BDIMX, BDIMY1, 1);
        dim3 blocks2((feature_size + BDIMX - 1) / BDIMX, PartSize, 1);
2090

2091 2092
        int64_t param_num = PartSize * feature_size;
        auto part_grad_param_ptr = phi::memory_utils::Alloc(
2093
            dev_ctx.GetPlace(),
2094
            param_num * sizeof(U) * 2,  // for both gamma and beta
2095
            phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

        U *part_grad_gamma = reinterpret_cast<U *>(part_grad_param_ptr->ptr());
        U *part_grad_beta = reinterpret_cast<U *>(part_grad_gamma + param_num);

        LayerNormBackwardPartGradGammaBeta<T, U, BDIMX, BDIMY1, VPT>
            <<<blocks2, threads2, 0, stream>>>(d_y,
                                               x,
                                               batch_size,
                                               feature_size,
                                               mean,
                                               var,
                                               epsilon,
                                               part_grad_gamma,
                                               part_grad_beta);

        constexpr int BDIMY2 = 8;
        dim3 threads3(BDIMX, BDIMY2, 1);
        const dim3 blocks3((feature_size + BDIMX - 1) / BDIMX, 1, 1);
        LayerNormBackwardSumGradGammaBeta<T, U, BDIMX, BDIMY2, ScaleT>
2115 2116
            <<<blocks3, threads3, 0, stream>>>(part_grad_gamma,
                                               part_grad_beta,
2117
                                               PartSize,
2118 2119 2120 2121
                                               batch_size,
                                               feature_size,
                                               d_scale,
                                               d_bias);
2122

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
        uint64_t addr = reinterpret_cast<uint64_t>(d_y) |
                        reinterpret_cast<uint64_t>(x) |
                        reinterpret_cast<uint64_t>(d_x);
        int vec_size = phi::GetVectorizedSize<T>(reinterpret_cast<T *>(addr));
        int real_vec = VecSizeJudgeForeGradInput(feature_size, vec_size);

        if (feature_size <= 2048) {
          // One thread must work with at least real_vec quantity data, at most
          // 8 data.
          int data_per_warp = BDIMX * real_vec;
          uint32_t warp_num =
              feature_size < data_per_warp ? 1 : (feature_size / data_per_warp);
#if defined(__clang__) || defined(__GNUC__)
          int block_dim_y = std::min(8, 1 << (31 - __builtin_clz(warp_num)));
#else
        int block_dim_y = 1;
        while (warp_num != 0) {
          warp_num = warp_num >> 1;
          block_dim_y <<= 1;
        }
        block_dim_y = std::min(8, (block_dim_y / 2));
#endif  // __GNUCC__

          dim3 threads1(BDIMX, block_dim_y, 1);
#define IMPL_BACKWARD_FOR_INPUT(num)                                       \
  LayerNormBackwardComputeGradInputWithSmallFeatureSize<T, U, ScaleT, num> \
      <<<batch_size, threads1, 0, stream>>>(                               \
          d_y, x, batch_size, feature_size, mean, var, epsilon, scale, d_x);

          switch (real_vec) {
            case 4: {
              IMPL_BACKWARD_FOR_INPUT(4);
            } break;
            case 2: {
              IMPL_BACKWARD_FOR_INPUT(2);
            } break;
            default: {
              IMPL_BACKWARD_FOR_INPUT(1);
            }
          }
#undef IMPL_BACKWARD_FOR_INPUT

        } else {
          constexpr int BDIMY3 = 4;
          dim3 threads1(BDIMX, BDIMY3, 1);
          LayerNormBackwardComputeGradInput<T, U, BDIMX, BDIMY3, ScaleT>
              <<<batch_size, threads1, 0, stream>>>(d_y,
                                                    x,
                                                    batch_size,
                                                    feature_size,
                                                    mean,
                                                    var,
                                                    epsilon,
                                                    scale,
                                                    d_x);
        }
2179 2180 2181 2182
#ifdef PADDLE_WITH_CUDA
      }
#endif

2183 2184 2185 2186 2187 2188 2189
      break;
    }
    default:
      break;
  }
}

2190 2191
}  // namespace funcs
}  // namespace phi