adam_kernel.cc 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/adam_kernel.h"

#include <vector>

19 20
#include "glog/logging.h"

21 22
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
23
#include "paddle/phi/core/tensor_utils.h"
24
#include "paddle/phi/kernels/funcs/adam_functors.h"
25
#include "paddle/phi/kernels/funcs/jit/kernels.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39

DECLARE_int32(inner_op_parallelism);

namespace phi {

template <typename T, typename Context>
void AdamDenseKernel(const Context& dev_ctx,
                     const DenseTensor& param,
                     const DenseTensor& grad,
                     const DenseTensor& learning_rate,
                     const DenseTensor& moment1,
                     const DenseTensor& moment2,
                     const DenseTensor& beta1_pow,
                     const DenseTensor& beta2_pow,
40 41
                     const paddle::optional<DenseTensor>& master_param,
                     const paddle::optional<DenseTensor>& skip_update,
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
                     const Scalar& beta1,
                     const Scalar& beta2,
                     const Scalar& epsilon,
                     bool lazy_mode,
                     int64_t min_row_size_to_use_multithread,
                     bool multi_precision,
                     bool use_global_beta_pow,
                     DenseTensor* param_out,
                     DenseTensor* moment1_out,
                     DenseTensor* moment2_out,
                     DenseTensor* beta1_pow_out,
                     DenseTensor* beta2_pow_out,
                     DenseTensor* master_param_outs) {
  VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow;

  bool skip_update_ = false;
  if (skip_update.is_initialized()) {
    PADDLE_ENFORCE_EQ(
        skip_update->numel(),
        1,
        errors::InvalidArgument("Input(SkipUpdate) size must be 1, but get %d",
                                skip_update->numel()));
    std::vector<bool> skip_update_vec;
65
    phi::TensorToVector(*skip_update, dev_ctx, &skip_update_vec);
66 67 68 69 70 71 72 73 74
    skip_update_ = skip_update_vec[0];
  }
  // skip_update=true, just copy input to output, and TensorCopy will call
  // mutable_data
  if (skip_update_) {
    VLOG(4) << "Adam skip update";
    phi::Copy(dev_ctx, param, dev_ctx.GetPlace(), false, param_out);
    phi::Copy(dev_ctx, moment1, dev_ctx.GetPlace(), false, moment1_out);
    phi::Copy(dev_ctx, moment2, dev_ctx.GetPlace(), false, moment2_out);
75 76 77 78
    if (!use_global_beta_pow) {
      phi::Copy(dev_ctx, beta1_pow, beta1_pow.place(), false, beta1_pow_out);
      phi::Copy(dev_ctx, beta2_pow, beta2_pow.place(), false, beta2_pow_out);
    }
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    return;
  }

  T beta1_ = beta1.to<T>();
  T beta2_ = beta2.to<T>();
  T epsilon_ = epsilon.to<T>();

  VLOG(3) << "beta1_pow.numel() : " << beta1_pow.numel();
  VLOG(3) << "beta2_pow.numel() : " << beta2_pow.numel();
  VLOG(3) << "param.numel(): " << param.numel();

  PADDLE_ENFORCE_EQ(
      beta1_pow_out->numel(),
      1,
      errors::InvalidArgument("beta1 pow output size should be 1, but received "
                              "value is:%d.",
                              beta1_pow_out->numel()));

  PADDLE_ENFORCE_EQ(
      beta2_pow_out->numel(),
      1,
      errors::InvalidArgument("beta2 pow output size should be 1, but received "
                              "value is:%d.",
                              beta2_pow_out->numel()));

  T beta1_p = beta1_pow.data<T>()[0];
  T beta2_p = beta2_pow.data<T>()[0];

  if (!use_global_beta_pow) {
    dev_ctx.template Alloc<T>(beta1_pow_out)[0] = beta1_ * beta1_p;
    dev_ctx.template Alloc<T>(beta2_pow_out)[0] = beta2_ * beta2_p;
  }

  T* param_out_ptr = dev_ctx.template Alloc<T>(param_out);
  T* mom1_out_ptr = dev_ctx.template Alloc<T>(moment1_out);
  T* mom2_out_ptr = dev_ctx.template Alloc<T>(moment2_out);

  T learning_rate_ =
      learning_rate.data<T>()[0] * (sqrt(1 - beta2_p) / (1 - beta1_p));
  T eps = epsilon_ * sqrt(1 - beta2_p);

120
  phi::jit::adam_attr_t attr(beta1_, beta2_);
121 122 123 124 125 126 127 128
  int64_t numel = param.numel();

  const T* param_ptr = param.data<T>();
  const T* mom1_ptr = moment1.data<T>();
  const T* mom2_ptr = moment2.data<T>();
  const T* grad_ptr = grad.data<T>();

  auto adam =
129 130
      phi::jit::KernelFuncs<phi::jit::AdamTuple<T>, phi::CPUPlace>::Cache().At(
          attr);
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

  static constexpr int64_t chunk_size = 512;

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int64_t i = 0; i < numel / chunk_size; ++i) {
    const int64_t offset = i * chunk_size;
    adam(beta1_,
         beta2_,
         -learning_rate_,
         eps,
         chunk_size,
         grad_ptr + offset,
         mom1_ptr + offset,
         mom2_ptr + offset,
         param_ptr + offset,
         mom1_out_ptr + offset,
         mom2_out_ptr + offset,
         param_out_ptr + offset);
  }

  if (numel % chunk_size != 0) {
    const int64_t offset = (numel / chunk_size) * chunk_size;
    const int64_t tail_numel = numel % chunk_size;
    adam(beta1_,
         beta2_,
         -learning_rate_,
         eps,
         tail_numel,
         grad_ptr + offset,
         mom1_ptr + offset,
         mom2_ptr + offset,
         param_ptr + offset,
         mom1_out_ptr + offset,
         mom2_out_ptr + offset,
         param_out_ptr + offset);
  }
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
template <typename T, typename Context>
void MergedAdamKernel(
    const Context& dev_ctx,
    const std::vector<const DenseTensor*>& param,
    const std::vector<const DenseTensor*>& grad,
    const std::vector<const DenseTensor*>& learning_rate,
    const std::vector<const DenseTensor*>& moment1,
    const std::vector<const DenseTensor*>& moment2,
    const std::vector<const DenseTensor*>& beta1_pow,
    const std::vector<const DenseTensor*>& beta2_pow,
    const paddle::optional<std::vector<const DenseTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<DenseTensor*> param_out,
    std::vector<DenseTensor*> moment1_out,
    std::vector<DenseTensor*> moment2_out,
    std::vector<DenseTensor*> beta1_pow_out,
    std::vector<DenseTensor*> beta2_pow_out,
    std::vector<DenseTensor*> master_param_out) {
  size_t param_num = param.size();
  PADDLE_ENFORCE_EQ(
      param_num,
      grad.size(),
      errors::InvalidArgument("The size of Input(grad) must be equal to "
                              "Input(param), but got the size of Input(grad) "
                              "is %d, the size of Input(param) is %d.",
                              grad.size(),
                              param_num));
  PADDLE_ENFORCE_EQ(
      param_num,
      learning_rate.size(),
      errors::InvalidArgument(
          "The size of Input(learning_rate) must be equal to "
          "Input(param), but got the size of Input(learning_rate) "
          "is %d, the size of Input(param) is %d.",
          learning_rate.size(),
          param_num));
  PADDLE_ENFORCE_EQ(param_num,
                    moment1.size(),
                    errors::InvalidArgument(
                        "The size of Input(moment1) must be equal to "
                        "Input(param), but got the size of Input(moment1) "
                        "is %d, the size of Input(param) is %d.",
                        moment1.size(),
                        param_num));
  PADDLE_ENFORCE_EQ(param_num,
                    moment2.size(),
                    errors::InvalidArgument(
                        "The size of Input(moment2) must be equal to "
                        "Input(param), but got the size of Input(moment2) "
                        "is %d, the size of Input(param) is %d.",
                        moment2.size(),
                        param_num));
  PADDLE_ENFORCE_EQ(param_num,
                    beta1_pow.size(),
                    errors::InvalidArgument(
                        "The size of Input(beta1_pow) must be equal to "
                        "Input(param), but got the size of Input(beta1_pow) "
                        "is %d, the size of Input(param) is %d.",
                        beta1_pow.size(),
                        param_num));
  PADDLE_ENFORCE_EQ(param_num,
                    beta2_pow.size(),
                    errors::InvalidArgument(
                        "The size of Input(beta2_pow) must be equal to "
                        "Input(param), but got the size of Input(beta2_pow) "
                        "is %d, the size of Input(param) is %d.",
                        beta2_pow.size(),
                        param_num));
  T beta1_ = beta1.to<T>();
  T beta2_ = beta2.to<T>();
  T epsilon_ = epsilon.to<T>();

  for (size_t idx = 0; idx < param_num; idx++) {
    phi::funcs::AdamFunctor<T, phi::funcs::CPUAdam> functor(
        beta1_,
        beta2_,
        epsilon_,
        beta1_pow[idx]->data<T>(),
        beta2_pow[idx]->data<T>(),
        moment1[idx]->data<T>(),
        dev_ctx.template Alloc<T>(moment1_out[idx]),
        moment2[idx]->data<T>(),
        dev_ctx.template Alloc<T>(moment2_out[idx]),
        learning_rate[idx]->data<T>(),
        grad[idx]->data<T>(),
        param[idx]->data<T>(),
        dev_ctx.template Alloc<T>(param_out[idx]));
    functor(param[idx]->numel());
    if (!use_global_beta_pow) {
      dev_ctx.template Alloc<T>(beta1_pow_out[idx])[0] =
          beta1_ * beta1_pow[idx]->data<T>()[0];
      dev_ctx.template Alloc<T>(beta2_pow_out[idx])[0] =
          beta2_ * beta2_pow[idx]->data<T>()[0];
    }
  }
}

272 273 274 275
}  // namespace phi

PD_REGISTER_KERNEL(adam, CPU, ALL_LAYOUT, phi::AdamDenseKernel, float, double) {
}
276 277 278

PD_REGISTER_KERNEL(
    merged_adam, CPU, ALL_LAYOUT, phi::MergedAdamKernel, float, double) {}