fusion_seqexpand_concat_fc_op.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/fusion_seqexpand_concat_fc_op.h"
16 17 18 19 20 21 22 23 24
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {

25 26 27 28 29 30 31 32 33 34 35 36 37 38
void FusionSeqExpandConcatFCOp::InferShape(
    framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE_GT(
      ctx->Inputs("X").size(), 1UL,
      "Inputs(X) of FusionSeqExpandConcatFCOp should larger than 1.");
  PADDLE_ENFORCE(
      ctx->HasInput("FCWeight"),
      "Input(FCWeight) of FusionSeqExpandConcatFCOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasOutput("Out"),
      "Output(Out) of FusionSeqExpandConcatFCOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasOutput("FCOut"),
      "Output(FCOut) of FusionSeqExpandConcatFCOp should not be null.");
T
tensor-tang 已提交
39

T
tensor-tang 已提交
40 41 42 43 44 45 46
  auto ins_dims = ctx->GetInputsDim("X");
  auto w_dims = ctx->GetInputDim("FCWeight");  // (M0+M1+M2+..) x D
  PADDLE_ENFORCE_EQ(w_dims.size(), 2UL, "Input(FCWeight)'s rank must be 2.");
  const int D = w_dims[1];
  int sum = ins_dims[0][1];
  for (size_t i = 1; i < ins_dims.size(); ++i) {
    sum += ins_dims[i][1];
47
  }
T
tensor-tang 已提交
48 49 50 51 52 53 54
  PADDLE_ENFORCE_EQ(sum, w_dims[0],
                    "FC height should be sum of all inputs width.");
  if (ctx->HasInput("FCBias")) {
    auto b_dims = ctx->GetInputDim("FCBias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(FCBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1, "FCBias shapes must be 1 * %d.", D);
    PADDLE_ENFORCE_EQ(b_dims[1], D, "FCBias shapes must be 1 * %d.", D);
55 56
  }

T
tensor-tang 已提交
57 58 59 60
  ctx->SetOutputDim("Out", {ins_dims[0][0], D});
  // fcout should be reshape when run since can not get lod in infershape
  // explicit share the ref lod
  ctx->ShareLoD("X", "Out", 0);
61 62
}

63
framework::OpKernelType FusionSeqExpandConcatFCOp::GetExpectedKernelType(
64 65
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
66
      framework::ToDataType(ctx.MultiInput<LoDTensor>("X")[0]->type()),
67 68 69
      ctx.device_context());
}

70
void FusionSeqExpandConcatFCOpMaker::Make() {
71
  AddInput("X",
T
tensor-tang 已提交
72 73 74 75 76 77
           "(LoDTensor) input LodDTensors, the first one must be have ref lod "
           "for sequence expand, and the rest input should have same lod.")
      .AsDuplicable();
  AddInput("FCWeight", "(Tensor) the weights of fc.");
  AddInput("FCBias", "(Tensor, optional) the bias of fc.").AsDispensable();
  AddOutput("Out", "(LoDTensor) Output LodTensor.");
78
  AddOutput(
T
tensor-tang 已提交
79 80 81
      "FCOut",
      "(Tensor) the intermediate tensor to keep the result of fc."
      "Shape is (N x D), where N is the batch size, D is the output dim of fc")
82
      .AsIntermediate();
T
tensor-tang 已提交
83 84 85 86 87
  AddAttr<std::string>("fc_activation",
                       "(string, default: identity)"
                       "The activation for the result of fc."
                       "`identity` by default.")
      .SetDefault("identity")
88 89 90 91
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
Fusion Sequence expand + concat + fc Operator.

T
tensor-tang 已提交
92
All below conditions should be meet:
93

T
tensor-tang 已提交
94
The ref_level of seq_expand should be 0.
95

T
tensor-tang 已提交
96 97 98 99 100 101 102
The ref lod of seq_expand level is the first input of concat.

The other inputs should have same lod and same batch size of ref lod.

The seq len of other inputs should be 1.

The concat axis should be 1.
103 104 105 106 107

)DOC");
}

template <typename T>
108
class FusionSeqExpandConcatFCOpKernel : public framework::OpKernel<T> {
109 110 111
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
112
    auto ins = ctx.MultiInput<LoDTensor>("X");
T
tensor-tang 已提交
113 114 115
    auto* w = ctx.Input<Tensor>("FCWeight");
    auto* b = ctx.Input<Tensor>("FCBias");
    auto* out = ctx.Output<LoDTensor>("Out");
T
tensor-tang 已提交
116
    auto* fc_out = ctx.Output<Tensor>("FCOut");
T
tensor-tang 已提交
117

T
tensor-tang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    auto* ref_in = ins[0];
    auto ref_lod = ref_in->lod();
    auto in1_lod = ins[1]->lod();
    auto ref_dims = ref_in->dims();  // T x M0
    auto in1_dims = ins[1]->dims();  // N x M1
    auto w_dims = w->dims();
    const int N = ref_lod[0].size() - 1;
    const int total_T = ref_dims[0];
    const int M0 = ref_dims[1];
    const int M1 = in1_dims[1];
    const int D = w_dims[1];

    // some check and fcout should be reshape here
    // since infershape can not get lod info
    PADDLE_ENFORCE_EQ(ref_lod.size(), 1UL, "Only support input lod size is 1.");
    PADDLE_ENFORCE_EQ(in1_lod.size(), 1UL, "Only support input lod size is 1.");
    PADDLE_ENFORCE_EQ(in1_lod[0].size() - 1, N,
                      "Batch size of all inputs should be equal.");
    PADDLE_ENFORCE_EQ(in1_lod[0][N], N,
                      "Seq_length of other inputs should be 1.");
    PADDLE_ENFORCE_EQ(in1_dims[0], N, "input height should be batch size.");
    for (size_t i = 2; i < ins.size(); ++i) {
      PADDLE_ENFORCE_EQ(ins[i]->dims()[0], N,
                        "All other inputs height should be equal");
      PADDLE_ENFORCE_EQ(ins[i]->lod(), in1_lod,
                        "All other inputs should have same lod");
    }
    fc_out->Resize({N, D});

T
tensor-tang 已提交
147 148
    std::function<void(const int, const T*, T*)> fc_act;
    auto& fc_act_str = ctx.Attr<std::string>("fc_activation");
149 150
    if (platform::jit::MayIUse(platform::jit::avx)) {
      math::VecActivations<T, platform::jit::avx> act_functor;
T
tensor-tang 已提交
151
      fc_act = act_functor(fc_act_str);
152 153
    } else {
      math::VecActivations<T, platform::jit::isa_any> act_functor;
T
tensor-tang 已提交
154
      fc_act = act_functor(fc_act_str);
155 156
    }

T
tensor-tang 已提交
157
    const T* ref_in_data = ref_in->data<T>();
T
tensor-tang 已提交
158 159 160
    const T* in1_data = ins[1]->data<T>();
    const T* w_data = w->data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());
161 162 163
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
164 165 166
    math::FCCompute<DeviceContext, T>(blas, total_T, D, M0, ref_in_data, w_data,
                                      out_data, b ? b->data<T>() : NULL);
    w_data = w_data + M0 * D;
T
tensor-tang 已提交
167
    // first write on
T
tensor-tang 已提交
168 169
    blas.MatMul(N, D, M1, in1_data, w_data, fc_out_data);
    w_data = w_data + M1 * D;
T
tensor-tang 已提交
170
    for (size_t i = 2; i < ins.size(); ++i) {
T
tensor-tang 已提交
171 172 173 174 175 176 177
      // add on
      const T* in_data = ins[i]->data<T>();
      const int K = ins[i]->dims()[1];
      blas.GEMM(CblasNoTrans, CblasNoTrans, N, D, K, static_cast<T>(1), in_data,
                K, w_data, D, static_cast<T>(1), fc_out_data, D);
      w_data = w_data + K * D;
    }
T
tensor-tang 已提交
178
    T* cur_out_data = out_data;
179
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
180
      int seq_len = ref_lod[0][i + 1] - ref_lod[0][i];
T
tensor-tang 已提交
181
      T* src = fc_out_data + i * D;
182
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
183 184
        blas.VADD(D, cur_out_data, src, cur_out_data);
        cur_out_data = cur_out_data + D;
185 186
      }
    }
T
tensor-tang 已提交
187
    fc_act(total_T * D, out_data, out_data);
188 189 190 191 192 193 194
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
195 196
REGISTER_OPERATOR(fusion_seqexpand_concat_fc, ops::FusionSeqExpandConcatFCOp,
                  ops::FusionSeqExpandConcatFCOpMaker,
197 198
                  paddle::framework::DefaultGradOpDescMaker<true>);

199 200 201
REGISTER_OP_CPU_KERNEL(fusion_seqexpand_concat_fc,
                       ops::FusionSeqExpandConcatFCOpKernel<float>,
                       ops::FusionSeqExpandConcatFCOpKernel<double>);