add_n_kernel.cu 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/add_n_kernel.h"

17
#include "paddle/phi/common/amp_type_traits.h"
18
#include "paddle/phi/common/memory_utils.h"
19
#include "paddle/phi/kernels/impl/add_n_kernel_impl.h"
20 21 22 23
namespace phi {

#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))

Y
YuanRisheng 已提交
24 25 26 27 28 29 30 31 32 33 34 35
template <class T>
__global__ void Sum2CUDAKernel(const T *in_0,
                               const T *in_1,
                               T *out,
                               int64_t N) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    out[id] = in_0[id] + in_1[id];
    id += blockDim.x * gridDim.x;
  }
}

36 37 38
template <class T>
__global__ void SumArrayCUDAKernel(
    T **in, T *out, int64_t N, size_t in_size, bool read_dst) {
39
  using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
40 41
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
42 43
    MPType total(read_dst ? static_cast<MPType>(out[id])
                          : static_cast<MPType>(0));
44 45 46
    for (int i = 0; i < in_size; ++i) {
      const T *tmp = in[i];
      if (tmp) {
47
        total += static_cast<MPType>(tmp[id]);
48 49
      }
    }
50
    out[id] = static_cast<T>(total);
51 52 53 54
    id += blockDim.x * gridDim.x;
  }
}

Y
YuanRisheng 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
template <class T>
__global__ void SumSelectedRowsCUDAKernel(T **sr_in_out,
                                          int64_t N,
                                          size_t rows) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    for (int i = 0; i < 2 * rows; i += 2) {
      const T *tmp = sr_in_out[i];
      T *tmp_out = sr_in_out[i + 1];
      if (tmp && tmp_out) {
        tmp_out[id] += tmp[id];
      }
    }
    id += blockDim.x * gridDim.x;
  }
}

72 73
template <typename T, typename Context>
void AddNKernel(const Context &dev_ctx,
Y
YuanRisheng 已提交
74
                const std::vector<const TensorBase *> &x,
75 76
                DenseTensor *out) {
  const size_t in_num = x.size();
77 78 79 80 81 82 83
  for (int i = 0; i < in_num; ++i) {
    PADDLE_ENFORCE_EQ(
        x[i]->initialized(),
        true,
        phi::errors::InvalidArgument(
            "This argument is invalid, %d-th tensor is uninitialized.", i));
  }
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

  constexpr size_t theory_sm_threads = 1024;
  auto stream = dev_ctx.stream();

  auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
  auto sm_count = max_threads / theory_sm_threads;
  size_t tile_size = 0;
  dim3 grids;
  dim3 blocks;

  auto ComputeKernelParameter = [&](size_t length) {
    if (length >= max_threads)
      tile_size = 1024;
    else if (length < max_threads && length > sm_count * 128)
      tile_size = 512;
    else if (length <= sm_count * 128)
      tile_size = 256;
    grids = dim3(CEIL_DIV(length, tile_size), 1, 1);
    blocks = dim3(tile_size, 1, 1);
  };
Y
YuanRisheng 已提交
104 105 106 107 108 109 110
  auto *out_ptr = dev_ctx.template Alloc<T>(out);
  bool in_place = false;
  if (x.size() > 0 && x[0]->initialized() && DenseTensor::classof(x[0])) {
    if ((static_cast<const DenseTensor *>(x[0]))->data() == out->data()) {
      in_place = true;
    }
  }
111

Y
YuanRisheng 已提交
112 113 114 115
  if (!in_place && in_num >= 1 && DenseTensor::classof(x[0])) {
    auto &in_0_tensor = *(static_cast<const DenseTensor *>(x[0]));
    if (in_0_tensor.numel() > 0) {
      in_place = (in_0_tensor.data<T>() == out_ptr);
116 117 118 119
    }
  }

  // Sum of two tensors
Y
YuanRisheng 已提交
120 121 122
  if (in_num == 2 && DenseTensor::classof(x[0]) && DenseTensor::classof(x[1])) {
    auto &in_0 = *(static_cast<const DenseTensor *>(x[0]));
    auto &in_1 = *(static_cast<const DenseTensor *>(x[1]));
123 124
    int64_t length_0 = in_0.numel();
    int64_t length_1 = in_1.numel();
Y
YuanRisheng 已提交
125
    if (length_0 && length_1 && in_0.IsInitialized() && in_1.IsInitialized()) {
126
      using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
127 128
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
129 130 131
      auto in_0_e = EigenVector<T>::Flatten(in_0).template cast<MPType>();
      auto in_1_e = EigenVector<T>::Flatten(in_1).template cast<MPType>();
      result.device(place) = (in_0_e + in_1_e).template cast<T>();
Y
YuanRisheng 已提交
132
    } else if (length_0 && in_0.IsInitialized()) {
133 134 135
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_0);
Y
YuanRisheng 已提交
136
    } else if (length_1 && in_1.IsInitialized()) {
137 138 139 140 141 142 143 144 145
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_1);
    }
    return;
  }

  int start = in_place ? 1 : 0;
  if (!in_place) {
Y
YuanRisheng 已提交
146
    phi::funcs::SetConstant<phi::GPUContext, T> constant_functor;
147 148 149 150
    constant_functor(dev_ctx, out, static_cast<T>(0));
  }

  std::vector<const T *> in_data;
Y
YuanRisheng 已提交
151
  std::vector<int> selectrow_index;
152 153 154
  int64_t lod_length = 0;
  bool dst_write = false;
  for (int i = start; i < in_num; ++i) {
Y
YuanRisheng 已提交
155 156 157 158 159 160 161 162
    if (DenseTensor::classof(x[i])) {
      auto &in_i = *(static_cast<const DenseTensor *>(x[i]));
      lod_length = in_i.numel();
      if (lod_length && in_i.IsInitialized()) {
        in_data.emplace_back(in_i.data<T>());
      }
    } else if (SelectedRows::classof(x[i])) {
      selectrow_index.push_back(i);
163 164 165
    }
  }

Y
YuanRisheng 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  // compute select rows separately.
  if (!selectrow_index.empty()) {
    std::vector<const T *> sr_in_out_data;
    size_t rows = 0;
    int64_t length = 0;
    for (auto index : selectrow_index) {
      auto &sr = *(static_cast<const SelectedRows *>(x[index]));
      auto &sr_value = sr.value();
      auto &sr_rows = sr.rows();

      auto row_numel = sr_value.numel() / sr_rows.size();
      auto out_dims = out->dims();

      PADDLE_ENFORCE_EQ(sr.height(),
                        out_dims[0],
                        errors::InvalidArgument(
                            "The table height of input must be same as output, "
                            "but received input height is %d"
                            ", output height is %d",
                            sr.height(),
                            out_dims[0]));
      PADDLE_ENFORCE_EQ(row_numel,
                        out->numel() / sr.height(),
                        errors::InvalidArgument(
                            "The table width of input must be same as output, "
                            "but received input width is %d"
                            ", output width is %d",
                            row_numel,
                            out->numel() / sr.height()));

      auto *sr_data = sr_value.data<T>();
      auto *sr_out_data = out->data<T>();
      rows += sr_rows.size();
      length = row_numel;

      for (size_t i = 0; i < sr_rows.size(); ++i) {
        sr_in_out_data.emplace_back(&sr_data[i * row_numel]);
        sr_in_out_data.emplace_back(&sr_out_data[sr_rows[i] * row_numel]);
      }
    }
    if (!sr_in_out_data.empty()) {
207
      auto tmp_sr_in_out_array = phi::memory_utils::Alloc(
Y
YuanRisheng 已提交
208 209
          dev_ctx.GetPlace(), sr_in_out_data.size() * sizeof(T *));

210 211 212 213 214 215
      memory_utils::Copy(dev_ctx.GetPlace(),
                         tmp_sr_in_out_array->ptr(),
                         phi::CPUPlace(),
                         reinterpret_cast<void *>(sr_in_out_data.data()),
                         sr_in_out_data.size() * sizeof(T *),
                         dev_ctx.stream());
Y
YuanRisheng 已提交
216 217 218 219 220 221 222 223 224 225

      T **sr_in_out_array_data =
          reinterpret_cast<T **>(tmp_sr_in_out_array->ptr());

      ComputeKernelParameter(length);
      SumSelectedRowsCUDAKernel<T>
          <<<grids, blocks, 0, stream>>>(sr_in_out_array_data, length, rows);
      dst_write = true;
    }
  }
226 227
  // if indata not null, merge into one kernel call.
  if (!in_data.empty()) {
228 229
    auto tmp_in_array = phi::memory_utils::Alloc(dev_ctx.GetPlace(),
                                                 in_data.size() * sizeof(T *));
230

231 232 233 234 235 236
    memory_utils::Copy(dev_ctx.GetPlace(),
                       tmp_in_array->ptr(),
                       phi::CPUPlace(),
                       reinterpret_cast<void *>(in_data.data()),
                       in_data.size() * sizeof(T *),
                       dev_ctx.stream());
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

    T **in_array_data = reinterpret_cast<T **>(tmp_in_array->ptr());
    ComputeKernelParameter(lod_length);
    SumArrayCUDAKernel<T><<<grids, blocks, 0, stream>>>(in_array_data,
                                                        out->data<T>(),
                                                        lod_length,
                                                        in_data.size(),
                                                        dst_write | in_place);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(add_n,
                   GPU,
                   ALL_LAYOUT,
                   phi::AddNKernel,
                   float,
                   double,
                   int,
                   phi::dtype::bfloat16,
Y
YuanRisheng 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270
                   phi::dtype::float16,
                   int64_t) {}

PD_REGISTER_KERNEL(add_n_array,
                   GPU,
                   ALL_LAYOUT,
                   phi::AddNArrayKernel,
                   float,
                   double,
                   int,
                   phi::dtype::bfloat16,
                   phi::dtype::float16,
                   int64_t) {}