SubSequenceLayer.cpp 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
Y
Yu Yang 已提交
18
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * A layer for taking the subsequence according to given offset and size
 * Input: original sequence, offset, size
 * Output: subsequence
 */

class SubSequenceLayer : public Layer {
protected:
  std::unique_ptr<Weight> biases_;
  MatrixPtr tmpSrc_;
  MatrixPtr tmpDest_;

public:
  explicit SubSequenceLayer(const LayerConfig& config) : Layer(config) {}

  ~SubSequenceLayer() {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);
  void backward(const UpdateCallback& callback = nullptr);
};

REGISTER_LAYER(subseq, SubSequenceLayer);

bool SubSequenceLayer::init(const LayerMap& layerMap,
                            const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  // sequene concatenation layer should have exactly 2 inputs
  CHECK_EQ(3U, inputLayers_.size());

  /* initialize biases_ */
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
  }

  tmpSrc_ =
      Matrix::create(nullptr, /* height= */ 1, 1, /* trans= */ false, useGpu_);
  tmpDest_ =
      Matrix::create(nullptr, /* height= */ 1, 1, /* trans= */ false, useGpu_);

  setNeedSequenceInfo(false);
  return true;
}

void SubSequenceLayer::forward(PassType passType) {
  Layer::forward(passType);

  size_t dim = getSize();

  const Argument& input = getInput(0);
  size_t numSequences1 = input.getNumSequences();
77
  auto startPositions1 = input.sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
78 79 80

  const Argument& offsetSeq = getInput(1);
  size_t numSequences2 = offsetSeq.getNumSequences();
81
  auto startPositions2 = offsetSeq.sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
82 83 84

  const Argument& sizeSeq = getInput(2);
  size_t numSequences3 = sizeSeq.getNumSequences();
85
  auto startPositions3 = sizeSeq.sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

  CHECK_EQ(dim, input.value->getWidth());

  CHECK_EQ(startPositions1->getData()[numSequences1], input.getBatchSize());
  CHECK_EQ(numSequences1, startPositions1->getSize() - 1);

  CHECK_EQ(startPositions2->getData()[numSequences2], offsetSeq.getBatchSize());
  CHECK_EQ(numSequences2, startPositions2->getSize() - 1);

  CHECK_EQ(startPositions3->getData()[numSequences3], sizeSeq.getBatchSize());
  CHECK_EQ(numSequences3, startPositions3->getSize() - 1);

  CHECK_EQ(numSequences1, numSequences2);
  CHECK_EQ(numSequences2, numSequences3);

  MatrixPtr inputValue = input.value;
  IVectorPtr offsetValue = offsetSeq.ids;
  IVectorPtr sizeValue = sizeSeq.ids;

  CHECK_EQ(offsetValue->getSize(), numSequences1);
  CHECK_EQ(sizeValue->getSize(), numSequences1);

  int* offsets = offsetValue->getData();
  int* sizes = sizeValue->getData();

  // get total height of output
  size_t height = 0;
  for (size_t seqId = 0; seqId < numSequences1; seqId++) {
    height += sizes[seqId];
  }

  // reset output
  resetOutput(height, dim);

  MatrixPtr outputValue = getOutputValue();

  const int* starts1 = startPositions1->getData();

  {
    AsyncGpuBlock asyncGpuBlock;
    REGISTER_TIMER_INFO("SubSequenceLayerForward", getName().c_str());

    size_t offsetIn = 0;
    size_t offsetOut = 0;
    size_t size = 0;
    for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
      offsetIn = starts1[seqId] + offsets[seqId];
      size = sizes[seqId];

      outputValue->subMatrix(offsetOut, size, tmpDest_)
          ->assign(*(inputValue->subMatrix(offsetIn, size, tmpSrc_)));

      offsetOut += size;
    }

    // modify the sequenceStartPositions
142 143
    ICpuGpuVector::resizeOrCreate(
        output_.sequenceStartPositions, numSequences1 + 1, false);
Z
zhangjinchao01 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

    int* tgtBuf = output_.sequenceStartPositions->getMutableData(false);
    int offset = 0;
    for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
      tgtBuf[seqId] = offset;
      offset += sizes[seqId];
    }
    tgtBuf[numSequences1] = offset;
  }

  if (biases_.get() != NULL) {
    MatrixPtr outV = getOutputValue();
    outV->addBias(*(biases_->getW()), 1);
  }

  /* activation */
  forwardActivation();
}

void SubSequenceLayer::backward(const UpdateCallback& callback) {
  /* activation */
  backwardActivation();

  if (biases_ && biases_->getWGrad()) {
    biases_->getWGrad()->collectBias(*getOutputGrad(), 1);

    // Increasing the number of gradient
    biases_->getParameterPtr()->incUpdate(callback);
  }

  MatrixPtr inputGrad1 = getInputGrad(0);
  MatrixPtr outputGrad = getOutputGrad();
176
  auto startPositions1 = getInput(0).sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  size_t numSequences1 = startPositions1->getSize() - 1;
  const int* starts1 = startPositions1->getData();

  IVectorPtr offsetValue = getInput(1).ids;
  IVectorPtr sizeValue = getInput(2).ids;

  int* offsets = offsetValue->getData();
  int* sizes = sizeValue->getData();
  {
    AsyncGpuBlock asyncGpuBlock;
    REGISTER_TIMER_INFO("SubSequenceLayerBackward", getName().c_str());

    int offsetIn = 0;
    int offsetOut = 0;
    int size = 0;
    for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
      offsetIn = starts1[seqId] + offsets[seqId];
      size = sizes[seqId];

      inputGrad1->subMatrix(offsetIn, size, tmpDest_)
          ->add(*(outputGrad->subMatrix(offsetOut, size, tmpSrc_)));
      offsetOut += size;
    }
  }
}

}  // namespace paddle