FullyConnectedLayer.cpp 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "FullyConnectedLayer.h"
Y
Yu Yang 已提交
16 17 18
#include <algorithm>
#include <vector>
#include "paddle/math/SparseMatrix.h"
Z
zhangjinchao01 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

REGISTER_LAYER(fc, FullyConnectedLayer);

bool FullyConnectedLayer::init(const LayerMap& layerMap,
                               const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  /* initialize the weightList */
  CHECK(inputLayers_.size() == parameters_.size());
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    // Option the parameters
    size_t height = inputLayers_[i]->getSize();
    size_t width = getSize();

    // create a new weight
    if (parameters_[i]->isSparse()) {
      CHECK_LE(parameters_[i]->getSize(), width * height);
    } else {
      CHECK_EQ(parameters_[i]->getSize(), width * height);
    }
    Weight* w = new Weight(height, width, parameters_[i]);

    // append the new weight to the list
    weights_.emplace_back(w);
  }

  /* initialize biases_ */
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
  }

  return true;
}

void FullyConnectedLayer::prefetch() {
  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    auto* sparseParam =
        dynamic_cast<SparsePrefetchRowCpuMatrix*>(weights_[i]->getW().get());
    if (sparseParam) {
      MatrixPtr input = getInputValue(i);
      sparseParam->addRows(input);
    }
  }
}

void FullyConnectedLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  int batchSize = getInput(0).getBatchSize();
  int size = getSize();

  {
    REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
    reserveOutput(batchSize, size);
  }

  MatrixPtr outV = getOutputValue();

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    auto input = getInput(i);
    CHECK(input.value) << "The input of 'fc' layer must be matrix";
    REGISTER_TIMER_INFO("FwMulTimer", getName().c_str());
87 88
    i == 0 ? outV->mul(*input.value, *weights_[i]->getW(), 1, 0)
           : outV->mul(*input.value, *weights_[i]->getW(), 1, 1);
Z
zhangjinchao01 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  }

  /* add the bias-vector */
  if (biases_.get() != NULL) {
    REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
    outV->addBias(*(biases_->getW()), 1);
  }

  /* activation */ {
    REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
    forwardActivation();
  }
}

void FullyConnectedLayer::backward(const UpdateCallback& callback) {
  /* Do derivation */ {
    REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
    backwardActivation();
  }

  if (biases_ && biases_->getWGrad()) {
    REGISTER_TIMER_INFO("BpBiasTimer", getName().c_str());
    biases_->getWGrad()->collectBias(*getOutputGrad(), 1);

    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

  bool syncFlag = hl_get_sync_flag();

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    /* Calculate the W-gradient for the current layer */
    if (weights_[i]->getWGrad()) {
      MatrixPtr input_T = getInputValue(i)->getTranspose();
      MatrixPtr oGrad = getOutputGrad();
      {
        REGISTER_TIMER_INFO("GradMulTimer", getName().c_str());
126
        weights_[i]->getWGrad()->mul(*input_T, *oGrad, 1, 1);
Z
zhangjinchao01 已提交
127 128 129 130 131 132 133 134 135 136 137 138
      }
    }

    // If callback does not change value, backprop error asynchronously so that
    // we can do the callback concurrently.
    hl_set_sync_flag(false);

    /* Calculate the input layers error */
    MatrixPtr preGrad = getInputGrad(i);
    if (NULL != preGrad) {
      MatrixPtr weights_T = weights_[i]->getW()->getTranspose();
      REGISTER_TIMER_INFO("BpMulTimer", getName().c_str());
139
      preGrad->mul(*getOutputGrad(), *weights_T, 1, 1);
Z
zhangjinchao01 已提交
140 141 142 143 144 145 146 147 148 149 150
    }

    hl_set_sync_flag(syncFlag);
    {
      REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle