io.py 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import paddle
18 19
from paddle.fluid.framework import Program, static_only
from paddle.fluid.io import load_persistables
20
from paddle.framework import core, dygraph_not_support
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle
            import paddle

            paddle.enable_static()
            exe = paddle.static.Executor(paddle.CPUPlace())
            param_path = "./my_paddle_model"
51
            t = paddle.distributed.transpiler.DistributeTranspiler()
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        receive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = paddle.static.Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
                slice = optimizer.slice
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
                endpoints[index] = endpoint

            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

            block.append_op(
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name),
                },
            )

        executor.run(prog)

    def __save_distributed_lookup_tables(
        executor, dirname, distributed_lookup_table, endpoints
    ):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = paddle.static.Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs
        )
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise TypeError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = (
        main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
            ["Optimizer", "RemotePrefetch"], groupby=True
        )
    )

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars())
    )
    paddle.static.save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars
    )

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor,
                dirname,
                main_program._distributed_lookup_table,
                main_program._endpoints,
            )


def is_persistable(var):
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            paddle.enable_static()
            param = fluid.default_main_program().global_block().var('fc.b')
            res = fluid.io.is_persistable(param)
    """
    if (
        var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var.desc.type() == core.VarDesc.VarType.READER
    ):
        return False
    return var.persistable


@dygraph_not_support
def save_persistables(executor, dirname, main_program=None, filename=None):
    """
    Save all persistable variables from :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file
    :code:`filename`.

    The :code:`dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
                            You can refer to :ref:`api_guide_executor_en` for
                            more details.

        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
                                         be saved. You can refer to
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.

    Returns:
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = paddle.static..data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            feeder = paddle.static.DataFeeder(feed_list=[image, label], place=paddle.CPUPlace())

            predict = paddle.static.nn.fc(x=image, size=10, activation='softmax')
            loss = paddle.nn.functional.cross_entropy(input=predict, label=label)
            avg_loss = paddle.mean(loss)
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            paddle.distributed.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
    """
    if main_program and main_program._is_distributed:
        return _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program
        )
    else:
        return paddle.static.save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename,
        )
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432


@static_only
def load_inference_model_distributed(
    dirname,
    executor,
    model_filename=None,
    params_filename=None,
    pserver_endpoints=None,
):
    """
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.

    Args:
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
        executor(Executor): The executor to run for loading inference model.
                            See :ref:`api_guide_executor_en` for more details about it.
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
                                    a list of pserver endpoints.

    Returns:
        list: The return of this API is a list with three elements:
        (program, feed_target_names, fetch_targets). The `program` is a
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.


    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            paddle.enable_static()
            # Build the model
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = paddle.create_parameter(shape=[784, 200], dtype='float32')
                b = paddle.create_parameter(shape=[200], dtype='float32')
                hidden_w = paddle.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)

            # Save the inference model
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
            [inference_program, feed_target_names, fetch_targets] = (
                paddle.distributed.io.load_inference_model_distributed(dirname=path, executor=exe))
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
                paddle.distributed.io.load_inference_model_distributed(dirname=path,
                                              executor=exe,
                                              pserver_endpoints=endpoints))

            # In this example, the inference program was saved in the file
            # "./infer_model/__model__" and parameters were saved in
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
    """
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
            raise ValueError("There is no directory named '%s'" % dirname)

        if model_filename is None:
            model_filename = '__model__'

        model_filename = os.path.join(
            load_dirname, os.path.basename(model_filename)
        )

        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename

    program = Program.parse_from_string(program_desc_str)
    if not core._is_program_version_supported(program._version()):
        raise ValueError(
            "Unsupported program version: %d\n" % program._version()
        )
    # Binary data also need versioning.
    load_persistables(executor, load_dirname, program, params_filename)

    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]