lamb_op.cc 8.0 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/optimizers/lamb_op.h"

namespace paddle {
namespace operators {

A
Aurelius84 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
class LambOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("Param"), true,
                      platform::errors::NotFound(
                          "Input(Param) of LambOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Grad"), true,
                      platform::errors::NotFound(
                          "Input(Grad) of LambOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Moment1"), true,
                      platform::errors::NotFound(
                          "Input(Moment1) of LambOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Moment2"), true,
                      platform::errors::NotFound(
                          "Input(Moment2) of LambOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("LearningRate"), true,
                      platform::errors::NotFound(
                          "Input(LearningRate) of LambOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Beta1Pow"), true,
                      platform::errors::NotFound(
                          "Input(Beta1Pow) of LambOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Beta2Pow"), true,
                      platform::errors::NotFound(
                          "Input(Beta2Pow) of LambOp should not be null."));

    PADDLE_ENFORCE_EQ(ctx->HasOutput("ParamOut"), true,
                      platform::errors::NotFound(
                          "Output(ParamOut) of LambOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment1Out"), true,
                      platform::errors::NotFound(
                          "Output(Moment1Out) of LambOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment2Out"), true,
                      platform::errors::NotFound(
                          "Output(Moment2Out) of LambOp should not be null."));

    auto lr_dims = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_NE(
        framework::product(lr_dims), 0,
        platform::errors::InvalidArgument(
            "The number of LearningRate shall not be 0, but received %d. Maybe "
            "the Input variable LearningRate has not "
            "been initialized. You may need to confirm "
            "if you put exe.run(startup_program) "
            "after optimizer.minimize function.",
            framework::product(lr_dims)));
    PADDLE_ENFORCE_EQ(
        framework::product(lr_dims), 1,
        platform::errors::InvalidArgument(
            "Learning rate should have 1 dimension, but received %d.",
            framework::product(lr_dims)));
    auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
    PADDLE_ENFORCE_GE(framework::product(beta1_pow_dims), 1,
                      platform::errors::InvalidArgument(
                          "The size of Beta1 power accumulator should be "
                          "greater than 0, but received %d.",
                          framework::product(beta1_pow_dims)));
    auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
    PADDLE_ENFORCE_GE(framework::product(beta2_pow_dims), 1,
                      platform::errors::InvalidArgument(
                          "The size of Beta2 power accumulator should be "
                          "greater than 0, but received %d.",
                          framework::product(beta2_pow_dims)));

    auto param_dims = ctx->GetInputDim("Param");
    if (ctx->GetInputsVarType("Grad")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      PADDLE_ENFORCE_EQ(
          param_dims, ctx->GetInputDim("Grad"),
          platform::errors::InvalidArgument(
              "Param and Grad input of LambOp should have same dimension. But "
              "received Param dims: [%s], Grad dims: [%s].",
              param_dims, ctx->GetInputDim("Grad")));
    }
    PADDLE_ENFORCE_EQ(
        param_dims, ctx->GetInputDim("Moment1"),
        platform::errors::InvalidArgument(
            "Param and Moment1 input of LambOp should have same dimension. But "
            "received Param dims: [%s], Moment1 dims: [%s].",
            param_dims, ctx->GetInputDim("Moment1")));
    PADDLE_ENFORCE_EQ(
        param_dims, ctx->GetInputDim("Moment2"),
        platform::errors::InvalidArgument(
            "Param and Moment2 input of LambOp should have same dimension. But "
            "received Param dims: [%s], Moment2 dims: [%s].",
            param_dims, ctx->GetInputDim("Moment2")));

    ctx->SetOutputDim("ParamOut", param_dims);
    ctx->SetOutputDim("Moment1Out", param_dims);
    ctx->SetOutputDim("Moment2Out", param_dims);
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    auto input_data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "Param");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

Y
Yibing Liu 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
class LambOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Param",
             "(LoDTensor, default LoDTensor<float>) "
             "Input parameter that has to be updated.");
    AddInput("Grad",
             "(LoDTensor, default LoDTensor<float>) "
             "Input gradient of the parameter.");
    AddInput("LearningRate", "(Tensor) Learning rate.");
    AddInput("Moment1", "(Tensor) Input first moment.");
    AddInput("Moment2", "(Tensor) Input second moment.");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator.");
    AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator.");

    AddOutput("ParamOut", "(Tensor) Output parameter.");
    AddOutput("Moment1Out", "(Tensor) Output first moment.");
    AddOutput("Moment2Out", "(Tensor) Output second moment.");
    AddAttr<float>("weight_decay", "(float) Weight decay rate.");
    AddAttr<float>("beta1",
                   "(float, default 0.9) The exponential decay rate for the "
                   "1st moment estimates.")
        .SetDefault(0.9);
    AddAttr<float>("beta2",
                   "(float, default 0.999) The exponential decay rate for the "
                   "2nd moment estimates.")
        .SetDefault(0.999);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) "
                   "Constant for numerical stability.")
        .SetDefault(1.0e-6f);

    AddComment(R"DOC(
LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

LAMB Optimizer is designed to scale up the batch size of training without losing 
accuracy, which supports adaptive element-wise updating and accurate layer-wise 
correction. For more information, please refer to https://arxiv.org/abs/1904.00962.

The updating of parameters follows:

$$
Y
Yibing Liu 已提交
163
m_t &= \beta_1 m_{t - 1}+ (1 - \beta_1)g_t \\
Y
Yibing Liu 已提交
164

Y
Yibing Liu 已提交
165
v_t &= \beta_2 v_{t - 1}  + (1 - \beta_2)g_t^2 \\
Y
Yibing Liu 已提交
166

Y
Yibing Liu 已提交
167
r_t &= \frac{m_t}{\sqrt{v_t}+\epsilon} \\
Y
Yibing Liu 已提交
168

Y
Yibing Liu 已提交
169
w_t &= w_{t-1} -\eta_t \frac{\left \| w_{t-1}\right \|}{\left \| r_t + \lambda w_{t-1}\right \|} (r_t + \lambda w_{t-1})
Y
Yibing Liu 已提交
170 171 172 173 174 175 176 177 178 179 180 181
$$

where $m$ is the 1st moment, and $v$ the 2nd moment, $\eta$ the 
learning rate, $\lambda$ the weight decay rate.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
A
Aurelius84 已提交
182
REGISTER_OP_WITHOUT_GRADIENT(lamb, ops::LambOp, ops::LambOpMaker);
Y
Yibing Liu 已提交
183 184 185
REGISTER_OP_CPU_KERNEL(
    lamb, ops::LambOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LambOpKernel<paddle::platform::CPUDeviceContext, double>);