ngraph_operator.cc 7.2 KB
Newer Older
B
baojun-nervana 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_NGRAPH
#include <glog/logging.h>

#include <algorithm>
#include <map>

#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/ngraph_operator.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_type.h"

namespace paddle {
namespace framework {

static std::map<proto::VarType::Type, ngraph::element::Type> pd2ng_type_map = {
    {proto::VarType::FP32, ngraph::element::f32},
    {proto::VarType::FP64, ngraph::element::f64},
    {proto::VarType::INT32, ngraph::element::i32},
    {proto::VarType::INT64, ngraph::element::i64},
    {proto::VarType::BOOL, ngraph::element::boolean},
};

B
baojun-nervana 已提交
38 39 40 41 42 43 44
typedef enum {                /* nGraph support state on ops          */
               FULL_TRAIN,    /* Support full ops for train           */
               PARTIAL_TRAIN, /* Support partial ops for train        */
               FULL_TEST,     /* Support full list of ops for test    */
               PARTIAL_TEST   /* Support partial list of ops for test */
} op_state;

B
baojun-nervana 已提交
45 46 47 48 49 50 51 52 53
class NgraphOperator {
 public:
  explicit NgraphOperator(const Scope& scope, const platform::Place& place,
                          const std::vector<std::shared_ptr<OperatorBase>>& ops,
                          const std::unordered_map<
                              std::string, ngraph::element::Type>& var_type_map,
                          const std::unordered_set<std::string>& persist,
                          const std::unordered_set<std::string>& fetches,
                          const std::unordered_set<std::string>& post_op_inputs,
B
baojun-nervana 已提交
54 55 56 57 58 59 60 61 62
                          op_state ng_op_state)
      : scope_(scope),
        place_(place),
        fused_ops_(ops),
        var_type_map_(var_type_map),
        persistables_(persist),
        fetches_(fetches),
        post_op_inputs_(post_op_inputs),
        ng_op_state_(ng_op_state) {}
B
baojun-nervana 已提交
63 64 65 66 67 68

  void Run(const Scope& scope, const platform::Place& place) const;

 private:
  static std::unordered_map<std::string, std::shared_ptr<ngraph::Function>>
      func_cache;
B
baojun-nervana 已提交
69 70 71 72 73 74 75 76
  const Scope& scope_;
  const platform::Place& place_;
  std::vector<std::shared_ptr<OperatorBase>> fused_ops_;
  std::unordered_map<std::string, ngraph::element::Type> var_type_map_;
  std::unordered_set<std::string> persistables_;
  std::unordered_set<std::string> fetches_;
  std::unordered_set<std::string> post_op_inputs_;
  op_state ng_op_state_;
B
baojun-nervana 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
};

std::vector<std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>>
FusedOperator::FusedOpIntervals(
    std::vector<std::unique_ptr<paddle::framework::OperatorBase>>* ops) {
  std::vector<std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>>
      intervals;
  if (ops->empty()) {
    return intervals;
  }
  size_t size = ops->size();
  size_t left = 0;
  while (left < size && ops.at(left)->Type() != kFeedOpType) {
    ++left;
  }
  if (left == size) {
    return intervals;
  }
  while (left < size && ops->at(left)->Type() == kFeedOpType) {
    ++left;
  }

  size_t right = left;
  while (right < size && ops->at(right)->Type() != kFetchOpType) {
    ++right;
  }
  if (right == size) {
    return intervals;
  }
  if (left >= right) return intervals;

  // (left, right - 1) represents indices between feed and fetch
  size_t pivot = left;
  while (pivot < right) {
    auto op_type = ops->at(pivot)->Type();
    if (paddle::framework::NgraphBridge::NG_NODE_MAP.find(op_type) ==
        paddle::framework::NgraphBridge::NG_NODE_MAP.end()) {
      ++pivot;
    } else {
      size_t start = pivot, end = start;
      while (pivot < right &&
             (paddle::framework::NgraphBridge::NG_NODE_MAP.find(
                  ops.at(pivot)->Type()) !=
              paddle::framework::NgraphBridge::NG_NODE_MAP.end())) {
        ++pivot;
        ++end;
      }
      std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>
          interval = {ops->begin() + start, ops->begin() + end};
      intervals.push_back(interval);
    }
  }  // end while

  return intervals;
}

FusedOperator::FusedOperator(
    const ProgramDesc& prog, size_t block_id,
    std::vector<std::unique_ptr<OperatorBase>>::iterator start,
    std::vector<std::unique_ptr<OperatorBase>>::iterator end,
B
baojun-nervana 已提交
137 138
    const std::string& type, const VariableNameMap& inputs,
    const VariableNameMap& outputs, const AttributeMap& attrs)
B
baojun-nervana 已提交
139 140 141
    : OperatorBase(type, inputs, outputs, attrs), pdesc(prog), block(block_id) {
  for (std::vector<std::unique_ptr<OperatorBase>>::iterator it = start;
       it != end; ++it) {
B
baojun-nervana 已提交
142
    fused_ops_.push_back(std::move(*it));
B
baojun-nervana 已提交
143 144 145 146 147 148
  }

  for (std::vector<std::unique_ptr<OperatorBase>>::iterator it = end;
       (*it)->Type() != kFetchOpType; ++it) {
    for (auto& var_name_item : (*it)->Inputs()) {
      for (auto& var_name : var_name_item.second) {
B
baojun-nervana 已提交
149
        post_op_inputs_.insert(var_name);
B
baojun-nervana 已提交
150 151 152 153 154 155 156 157
      }
    }
  }

  if ((*(start - 1))->Type() == kFeedOpType && (*end)->Type() == kFetchOpType) {
    is_complete = true;
  }

B
baojun-nervana 已提交
158
  Process();
B
baojun-nervana 已提交
159 160
}

B
baojun-nervana 已提交
161 162
void FusedOperator::Process() {
  auto& bdesc = pdesc_.Block(block_);
B
baojun-nervana 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  for (auto& var : bdesc.AllVars()) {
    if (!(var->GetType() == proto::VarType::SELECTED_ROWS ||
          var->GetType() == proto::VarType::LOD_TENSOR ||
          var->GetType() == proto::VarType::LOD_TENSOR_ARRAY)) {
      continue;
    }

    auto var_name = var->Name();
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_name != "fetch" && var_name != "feed") {
      auto pd_type = var->GetDataType();
      if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) {
        PADDLE_THROW("Data type of var %s not found in pd2ng_type_map",
                     var_name);
      }
B
baojun-nervana 已提交
181
      var_type_map_[var_name] = pd2ng_type_map[pd_type];
B
baojun-nervana 已提交
182 183 184
    }

    if (var->Persistable()) {
B
baojun-nervana 已提交
185
      persistables_.insert(var->Name());
B
baojun-nervana 已提交
186 187 188 189 190 191
    }
  }

  for (auto* op : bdesc.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
B
baojun-nervana 已提交
192
      fetches_.insert(fetch_target_name);
B
baojun-nervana 已提交
193 194 195 196 197 198
    }
  }
}

void FusedOperator::RunImpl(const Scope& scope,
                            const platform::Place& place) const {
B
baojun-nervana 已提交
199 200
  op_state ng_op_state = PARTIAL_TEST;
  auto& bdesc = pdesc_.Block(block_);
B
baojun-nervana 已提交
201 202
  for (auto* op : bdesc.AllOps()) {
    if (op->Type().find("_grad") != std::string::npos) {
B
baojun-nervana 已提交
203
      ng_op_state = PARTIAL_TRAIN;
B
baojun-nervana 已提交
204 205 206 207
      break;
    }
  }

B
baojun-nervana 已提交
208 209
  if (is_full) {
    ng_op_state = ng_op_state == PARTIAL_TEST ? FULL_TEST : FULL_TRAIN;
B
baojun-nervana 已提交
210 211
  }

B
baojun-nervana 已提交
212 213 214
  NgraphOperator ngraph_op(scope, place, fused_ops_, var_type_map_,
                           persistables_, fetches_, post_op_inputs_,
                           ng_op_state);
B
baojun-nervana 已提交
215 216 217 218 219 220
  ngraph_op.Run(scope, place);
}

}  // namespace framework
}  // namespace paddle
#endif