operator.cc 41.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
28
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/shape_inference.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
33

D
dzhwinter 已提交
34
DECLARE_bool(benchmark);
35
DECLARE_bool(check_nan_inf);
Q
Qiao Longfei 已提交
36
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
37 38 39
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
40

Q
Qiao Longfei 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47 48 49
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
50

51 52
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
53
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
54 55
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
56 57
  }

M
minqiyang 已提交
58 59 60 61 62 63 64 65 66
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
67 68 69 70 71
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
72 73 74 75 76 77
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
78 79 80 81 82
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
83

M
minqiyang 已提交
84 85 86
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
87 88
      return "";
    }
Y
Yu Yang 已提交
89
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
90
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
91 92 93 94
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
95
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
96
    }
D
dzhwinter 已提交
97 98 99 100 101
  } else {
    return "";
  }
}

102 103 104 105 106 107
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
108 109
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
110 111 112 113 114
  }

  return -1;
}

115
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
116 117 118 119 120 121 122
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
123 124 125
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
126 127 128 129 130
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
131 132 133 134 135
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
136
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
137 138 139 140 141 142
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
143
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
144 145 146 147 148 149
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

150
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
151 152 153
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
154
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
155
      PADDLE_THROW("Cannot run operator on place %s", place);
156
#else
P
peizhilin 已提交
157 158
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
159
#endif
P
peizhilin 已提交
160
    }
P
peizhilin 已提交
161

P
peizhilin 已提交
162 163 164 165 166
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
167
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
168 169 170 171 172 173
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
    VLOG(3) << place << " " << DebugStringEx(&scope);
  } catch (platform::EnforceNotMet exception) {
174
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
175
    throw std::move(exception);
176 177 178 179 180 181
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
182
  } catch (...) {
183
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
184
    std::rethrow_exception(std::current_exception());
185
  }
186 187
}

188
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
189
  return inputs_.find(name) != inputs_.end();
190 191
}

192
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
193
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
194
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
195 196
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
197
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
198 199
}

Y
Yu Yang 已提交
200 201
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
202
  auto it = inputs_.find(name);
203 204
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
205
  return it->second;
Y
Yan Chunwei 已提交
206 207
}

208
bool OperatorBase::HasOutputs(const std::string& name) const {
209
  if (outputs_.find(name) != outputs_.end()) {
210 211 212 213 214 215
    return true;
  } else {
    return false;
  }
}

216
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
217
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
218
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
219 220
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
221
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
222 223
}

Y
Yu Yang 已提交
224 225
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
226
  auto it = outputs_.find(name);
227 228
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
229
  return it->second;
Y
Yan Chunwei 已提交
230 231
}

232
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
233
  std::stringstream ss;
Y
Yu Yang 已提交
234
  ss << "Op(" << type_ << "), inputs:{";
235 236 237 238 239 240 241

  std::unordered_set<std::string> no_need_buffer_vars;
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
        Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs());
  }

Y
Yu Yang 已提交
242 243
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
244
    bool is_no_need_buffer_var = (no_need_buffer_vars.count(input.first) > 0);
Y
Yu Yang 已提交
245 246
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
247 248
      auto var_name = input.second[i];
      ss << var_name;
249
      if (scope) {
Q
Qiao Longfei 已提交
250 251 252 253 254 255 256
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
257 258 259
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
260
          ss << ":" << dtype;
261 262
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
263
        }
264
      }
Y
Yu Yang 已提交
265 266 267
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
268
    }
Y
Yu Yang 已提交
269
    ss << "]";
Y
Yu Yang 已提交
270 271
    ++it;
    if (it != inputs_.end()) {
272 273
      ss << ", ";
    }
Q
Qiao Longfei 已提交
274
  }
Y
Yu Yang 已提交
275
  ss << "}, outputs:{";
Y
Yu Yang 已提交
276 277
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
278 279
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
280 281
      auto var_name = output.second[i];
      ss << var_name;
282
      if (scope) {
Q
Qiao Longfei 已提交
283 284 285 286 287 288 289
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
290 291
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
292 293
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
294
        }
295
      }
Y
Yu Yang 已提交
296 297 298
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
299
    }
Y
Yu Yang 已提交
300
    ss << "]";
Y
Yu Yang 已提交
301 302
    ++it;
    if (it != outputs_.end()) {
303 304
      ss << ", ";
    }
Q
Qiao Longfei 已提交
305
  }
Y
Yu Yang 已提交
306
  ss << "}.";
Q
Qiao Longfei 已提交
307 308 309
  return ss.str();
}

Y
Yu Yang 已提交
310
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
311 312
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
313
                           const AttributeMap& attrs)
S
sneaxiy 已提交
314 315 316 317 318 319
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
320 321
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
322
}
323

Q
qijun 已提交
324 325
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
326
  for (auto& o : inputs_) {
Q
qijun 已提交
327 328 329 330 331 332
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
333 334 335 336 337 338 339 340 341 342
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
343
  auto& info = Info();
Y
Yu Yang 已提交
344 345

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
346
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
347 348 349 350 351 352 353 354 355
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
356 357
}

358
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
359
  if (info_ == nullptr || info_->proto_ == nullptr) return;
360

S
sneaxiy 已提交
361
  for (auto& in : info_->Proto().inputs()) {
362 363 364 365
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
366 367
  }

S
sneaxiy 已提交
368
  for (auto& out : info_->Proto().outputs()) {
369 370 371 372 373
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
390
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
391
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
392 393
}

C
chengduo 已提交
394
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
395 396 397 398
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
399
  } else {
Y
Yang Yang 已提交
400
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
401
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
402 403 404
  }
}

C
chengduo 已提交
405
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
406
  if (var->IsType<LoDTensor>()) {
407
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
408
  } else if (var->IsType<SelectedRows>()) {
409
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
410
  } else {
Y
Yang Yang 已提交
411
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
412
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
413 414 415
  }
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
448 449 450 451 452 453 454 455 456 457
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
458
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
459 460 461 462 463 464 465 466 467
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

468
template <>
469
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
470
  return Input<LoDTensor>(name);
471 472 473
}

template <>
474
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
475
    const std::string& name) const {
X
Xin Pan 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
489
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
490 491 492 493 494
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

495
template <>
496
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
497
  return Output<LoDTensor>(name);
498 499 500
}

template <>
501
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
502
    const std::string& name) const {
503 504 505 506 507
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
508
  std::vector<Tensor*> res;
509 510 511 512 513
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
514
                 });
515 516 517
  return res;
}

Y
Yu Yang 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

533 534
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
535 536
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
537
      : op_(op), ctx_(ctx) {}
538 539

  bool HasInput(const std::string& name) const override {
540
    // has only one input
X
Xin Pan 已提交
541
    const auto& ins = ctx_.inputs;
542 543
    auto it = ins.find(name);
    if (it == ins.end()) {
544 545
      return false;
    }
546
    const auto& in = it->second;
X
Xin Pan 已提交
547
    if (in.size() == 0) return false;
T
tensor-tang 已提交
548
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
549
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
550
    return in[0] != nullptr;
551 552 553
  }

  bool HasOutput(const std::string& name) const override {
554
    // has only one output
X
Xin Pan 已提交
555
    const auto& outs = ctx_.outputs;
556 557
    auto it = outs.find(name);
    if (it == outs.end()) {
558 559
      return false;
    }
560
    const auto& out = it->second;
X
Xin Pan 已提交
561
    if (out.size() == 0) {
562 563
      return false;
    }
T
tensor-tang 已提交
564 565
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
566
    return out[0] != nullptr;
567 568 569
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
570 571
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
572
    if (it == ins.end() || it->second.empty()) {
573 574
      return false;
    }
X
Xin Pan 已提交
575 576
    for (auto& input : it->second) {
      if (input == nullptr) {
577 578 579 580 581 582 583
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
584 585
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
586
    if (it == outs.end() || it->second.empty()) {
587 588
      return false;
    }
X
Xin Pan 已提交
589 590
    for (auto& output : it->second) {
      if (output == nullptr) {
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

609 610
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
611 612 613 614 615 616 617 618 619
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
620 621

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
622
                   "The type of %s and %s is not the same.", in, out);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
641 642
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
643 644 645 646 647 648 649 650
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
651
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
652
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
653 654
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
655
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
656 657
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
658

M
mozga-intel 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
678 679
  }

C
chengduo 已提交
680 681 682 683 684
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

685 686
  bool IsRuntime() const override { return true; }

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
719 720 721 722 723 724 725 726 727 728
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

743
 protected:
X
Xin Pan 已提交
744
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
745
    PADDLE_ENFORCE_NOT_NULL(var);
746 747 748 749 750
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
751
      PADDLE_THROW(
X
Xin Pan 已提交
752
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
753
          "type_id is %s.",
S
sneaxiy 已提交
754
          ToTypeName(var->Type()));
F
fengjiayi 已提交
755 756 757
    }
  }

X
Xin Pan 已提交
758 759 760 761 762 763 764 765
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
766
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
767
    PADDLE_THROW("Only compile time support this method");
768 769
  }

X
Xin Pan 已提交
770
  void SetDim(Variable* var, const DDim& dim) {
771 772 773 774 775
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
776
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
777
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
778 779 780 781 782 783 784 785 786 787 788 789
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
790 791 792
    }
  }

F
fengjiayi 已提交
793 794
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
795
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
796 797
  }

X
Xin Pan 已提交
798 799 800 801 802 803 804 805 806 807 808
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
809 810 811
    return ToVarType(var->Type());
  }

812 813 814 815 816 817 818 819 820 821 822 823 824 825
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
826 827
  }

828
  const OperatorBase& op_;
X
Xin Pan 已提交
829
  const RuntimeContext& ctx_;
830 831
};

832 833
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
834 835 836 837
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
838 839
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
840 841 842
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
843
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
844
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
845
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
846 847
}

B
baojun-nervana 已提交
848
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
849 850 851
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
852 853 854
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
855 856 857 858 859 860 861 862 863 864
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
865 866
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
867 868
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
869 870 871
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
872
      HasAttr(kAllKernelsMustComputeRuntimeShape))
873 874
    all_kernels_must_compute_runtime_shape_ = true;
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
875 876 877 878
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
879 880 881 882 883 884
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
885 886 887 888 889 890 891 892
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
893
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
894
  auto* dev_ctx = pool.Get(place);
895

896
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
897
    ChooseKernel(*runtime_ctx, scope, place);
898 899
  }

L
Liu Yiqun 已提交
900
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
901

Y
yuyang18 已提交
902 903
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
904
  auto* transfer_scope =
905
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
906

Y
yuyang18 已提交
907 908 909 910
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

911 912
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
913
  }
Q
QI JUN 已提交
914

915
  if (!all_kernels_must_compute_runtime_shape_) {
L
luotao1 已提交
916
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
917 918
    this->InferShape(&infer_shape_ctx);
  }
X
clean  
Xin Pan 已提交
919 920
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
921 922
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
923

Y
yuyang18 已提交
924 925 926
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
927 928
  }

D
dzhwinter 已提交
929
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
930
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
931
    dev_ctx->Wait();
D
dzhwinter 已提交
932
  }
C
chengduoZH 已提交
933

P
pkpk 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
953 954
  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
955
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
956 957
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
958
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
959
      } else if (var->IsType<framework::SelectedRows>()) {
960 961
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
962 963 964
      }
    }
  }
965 966 967 968 969 970 971

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
972
}
X
Xin Pan 已提交
973

L
Liu Yiqun 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

1010 1011 1012 1013 1014
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1015 1016
}

Y
yuyang18 已提交
1017 1018 1019 1020
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1021
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1022 1023 1024
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1025
    auto* original_tensor =
C
chengduo 已提交
1026
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1027
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1028 1029
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1030
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1031 1032 1033 1034
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1035
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1036
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1037 1038
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1039
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

  std::unordered_set<std::string> no_buffer_ins;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = no_buffer_inferer(Inputs(), Outputs(), Attrs());
    }
  }

Y
yuyang18 已提交
1050
  for (auto& var_name_item : Inputs()) {
S
sneaxiy 已提交
1051 1052 1053 1054 1055
    // NOTE(zjl): STL does not guarantee fast std::unordered_set::count when set
    // is empty. At least STL implemented on my mac does calculate hash code
    // of search key even though the set is empty.
    if (!no_buffer_ins.empty() &&
        no_buffer_ins.count(var_name_item.first) > 0) {
G
gongweibao 已提交
1056
      VLOG(7) << "Skip scanning input " << var_name_item.first
S
sneaxiy 已提交
1057
              << " in Operator " << type_;
S
sneaxiy 已提交
1058 1059 1060
      continue;
    }

X
Xin Pan 已提交
1061 1062 1063 1064
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1065
      auto* var = input_vars[i];
X
Xin Pan 已提交
1066

Y
yuyang18 已提交
1067
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1068
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1069 1070 1071
        continue;
      }

C
chengduo 已提交
1072
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1090 1091
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
1105 1106 1107 1108 1109 1110 1111 1112 1113
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1114 1115
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1116
        enable_cache_transfer_scope_ = true;
1117
      }
1118
      if (!new_scope) {
Y
yuyang18 已提交
1119 1120
        new_scope = &scope.NewScope();
      }
1121 1122 1123 1124
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1125
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1126 1127 1128
      // time, not the gpu tensor.
      // Thus, we set pre_scope_ = nullptr to trigger `new RuntimeContext()` in
      // RunImpl().
1129
      if (enable_cache_runtime_context_) {
1130 1131
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1132 1133

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1134
      input_vars[i] = trans_var;
1135

Y
yuyang18 已提交
1136
      Tensor out;
Y
yuyang18 已提交
1137
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1138 1139 1140 1141 1142 1143
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  const std::vector<const Variable*> vars = ctx.MultiInputVar(name);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
      }
      if (t != nullptr) {
        PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                          "The Tensor in the %s Op's Input Variable %s(%s) is "
                          "not initialized.",
                          Type(), name, ctx.Inputs(name).at(i));
        proto::VarType::Type tmp = t->type();
        PADDLE_ENFORCE(tmp == *data_type || *data_type == dafault_data_type,
                       "The DataType of %s Op's duplicable Variable %s must be "
                       "consistent. The current variable type is (%s), but the "
                       "previous variable type is (%s).",
                       Type(), name, DataTypeToString(tmp),
                       DataTypeToString(*data_type));
        *data_type = tmp;
      }
    }
  }
}

1180
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1181
    const ExecutionContext& ctx) const {
1182 1183 1184
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
Y
Yu Yang 已提交
1185
  for (auto& input : this->inputs_) {
1186
    ParseInputDataType(ctx, input.first, &data_type);
Y
Yu Yang 已提交
1187
  }
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
  PADDLE_ENFORCE_NE(data_type, dafault_data_type,
                    "DataType should be indicated by input Variable.");
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      "The Input Variable(%s) of %s Op used to determine kernel data type "
      "is empty or not LoDTensor or SelectedRows.",
      name, Type());
1204
  return data_type;
Y
Yu Yang 已提交
1205
}
1206

1207 1208 1209 1210 1211 1212 1213 1214
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1215 1216
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1217 1218
}

Q
Qiao Longfei 已提交
1219
}  // namespace framework
L
liaogang 已提交
1220
}  // namespace paddle