cauchy.py 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numbers

import numpy as np

import paddle
from paddle.distribution import distribution
from paddle.fluid import framework


class Cauchy(distribution.Distribution):
    r"""Cauchy distribution is also called Cauchy–Lorentz distribution. It is a continuous probability distribution named after Augustin-Louis Cauchy and Hendrik Lorentz. It has a very wide range of applications in natural sciences.

    The Cauchy distribution has the probability density function (PDF):

    .. math::

        { f(x; loc, scale) = \frac{1}{\pi scale \left[1 + \left(\frac{x - loc}{ scale}\right)^2\right]} = { 1 \over \pi } \left[ {  scale \over (x - loc)^2 +  scale^2 } \right], }

    Args:
        loc (float|Tensor): Location of the peak of the distribution. The data type is float32 or float64.
        scale (float|Tensor): The half-width at half-maximum (HWHM). The data type is float32 or float64. Must be positive values.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:

        .. code-block:: python

            import paddle
            from paddle.distribution import Cauchy

            # init Cauchy with float
            rv = Cauchy(loc=0.1, scale=1.2)
            print(rv.entropy())
48
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
            #        2.71334577)

            # init Cauchy with N-Dim tensor
            rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
            print(rv.entropy())
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2.53102422, 3.22417140])
    """

    def __init__(self, loc, scale, name=None):
        self.name = name if name is not None else 'Cauchy'

        if not isinstance(loc, (numbers.Real, framework.Variable)):
            raise TypeError(
                f"Expected type of loc is Real|Variable, but got {type(loc)}"
            )
        if not isinstance(scale, (numbers.Real, framework.Variable)):
            raise TypeError(
                f"Expected type of scale is Real|Variable, but got {type(scale)}"
            )

        if isinstance(loc, numbers.Real):
            loc = paddle.full(shape=(), fill_value=loc)

        if isinstance(scale, numbers.Real):
            scale = paddle.full(shape=(), fill_value=scale)

        if loc.shape != scale.shape:
            self.loc, self.scale = paddle.broadcast_tensors([loc, scale])
        else:
            self.loc, self.scale = loc, scale

        self.dtype = self.loc.dtype

        super().__init__(batch_shape=self.loc.shape, event_shape=())

    @property
    def mean(self):
        """Mean of Cauchy distribution."""
        raise ValueError("Cauchy distribution has no mean.")

    @property
    def variance(self):
        """Variance of Cauchy distribution."""
        raise ValueError("Cauchy distribution has no variance.")

    @property
    def stddev(self):
        """Standard Deviation of Cauchy distribution."""
        raise ValueError("Cauchy distribution has no stddev.")

    def sample(self, shape, name=None):
        """Sample from Cauchy distribution.

        Note:
            `sample` method has no grad, if you want so, please use `rsample` instead.

        Args:
            shape (Sequence[int]): Sample shape.
            name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

        Returns:
            Tensor: Sampled data with shape `sample_shape` + `batch_shape` + `event_shape`.

        Examples:

            .. code-block:: python

                import paddle
                from paddle.distribution import Cauchy

                # init Cauchy with float
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.sample([10]).shape)
                # [10]

                # init Cauchy with 0-Dim tensor
                rv = Cauchy(loc=paddle.full((), 0.1), scale=paddle.full((), 1.2))
                print(rv.sample([10]).shape)
                # [10]

                # init Cauchy with N-Dim tensor
                rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.sample([10]).shape)
                # [10, 2]

                # sample 2-Dim data
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.sample([10, 2]).shape)
                # [10, 2]

                rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.sample([10, 2]).shape)
                # [10, 2, 2]
        """
        name = name if name is not None else (self.name + '_sample')
        with paddle.no_grad():
            return self.rsample(shape, name)

    def rsample(self, shape, name=None):
        """Sample from Cauchy distribution (reparameterized).

        Args:
            shape (Sequence[int]): Sample shape.
            name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

        Returns:
            Tensor: Sampled data with shape `sample_shape` + `batch_shape` + `event_shape`.

        Examples:

            .. code-block:: python

                import paddle
                from paddle.distribution import Cauchy

                # init Cauchy with float
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.rsample([10]).shape)
                # [10]

                # init Cauchy with 0-Dim tensor
                rv = Cauchy(loc=paddle.full((), 0.1), scale=paddle.full((), 1.2))
                print(rv.rsample([10]).shape)
                # [10]

                # init Cauchy with N-Dim tensor
                rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.rsample([10]).shape)
                # [10, 2]

                # sample 2-Dim data
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.rsample([10, 2]).shape)
                # [10, 2]

                rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.rsample([10, 2]).shape)
                # [10, 2, 2]
        """
        name = name if name is not None else (self.name + '_rsample')

        if not isinstance(shape, (np.ndarray, framework.Variable, list, tuple)):
            raise TypeError(
                f"Expected type of shape is Sequence[int], but got {type(shape)}"
            )

        shape = shape if isinstance(shape, tuple) else tuple(shape)
        shape = self._extend_shape(shape)

        loc = self.loc.expand(shape)
        scale = self.scale.expand(shape)
        uniforms = paddle.rand(shape, dtype=self.dtype)
        return paddle.add(
            loc,
            paddle.multiply(scale, paddle.tan(np.pi * (uniforms - 0.5))),
            name=name,
        )

    def prob(self, value):
        r"""Probability density function(PDF) evaluated at value.

        .. math::

            { f(x; loc, scale) = \frac{1}{\pi scale \left[1 + \left(\frac{x - loc}{ scale}\right)^2\right]} = { 1 \over \pi } \left[ {  scale \over (x - loc)^2 +  scale^2 } \right], }

        Args:
            value (Tensor): Value to be evaluated.

        Returns:
            Tensor: PDF evaluated at value.

        Examples:

            .. code-block:: python

                import paddle
                from paddle.distribution import Cauchy

                # init Cauchy with float
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.prob(paddle.to_tensor(1.5)))
231 232
                # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        0.11234467)
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

                # broadcast to value
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.prob(paddle.to_tensor([1.5, 5.1])))
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [0.11234467, 0.01444674])

                # init Cauchy with N-Dim tensor
                rv = Cauchy(loc=paddle.to_tensor([0.1, 0.1]), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.prob(paddle.to_tensor([1.5, 5.1])))
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [0.10753712, 0.02195240])

                # init Cauchy with N-Dim tensor with broadcast
                rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.prob(paddle.to_tensor([1.5, 5.1])))
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [0.10753712, 0.02195240])
        """
        name = self.name + '_prob'

        if not isinstance(value, framework.Variable):
            raise TypeError(
                f"Expected type of value is Variable, but got {type(value)}"
            )

        return self.log_prob(value).exp(name=name)

    def log_prob(self, value):
        """Log of probability densitiy function.

        Args:
            value (Tensor): Value to be evaluated.

        Returns:
            Tensor: Log of probability densitiy evaluated at value.

        Examples:

            .. code-block:: python

                import paddle
                from paddle.distribution import Cauchy

                # init Cauchy with float
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.log_prob(paddle.to_tensor(1.5)))
280 281
                # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        -2.18618369)
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

                # broadcast to value
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.log_prob(paddle.to_tensor([1.5, 5.1])))
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [-2.18618369, -4.23728657])

                # init Cauchy with N-Dim tensor
                rv = Cauchy(loc=paddle.to_tensor([0.1, 0.1]), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.log_prob(paddle.to_tensor([1.5, 5.1])))
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [-2.22991920, -3.81887865])

                # init Cauchy with N-Dim tensor with broadcast
                rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.log_prob(paddle.to_tensor([1.5, 5.1])))
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [-2.22991920, -3.81887865])
        """
        name = self.name + '_log_prob'

        if not isinstance(value, framework.Variable):
            raise TypeError(
                f"Expected type of value is Variable, but got {type(value)}"
            )

        value = self._check_values_dtype_in_probs(self.loc, value)
        loc, scale, value = paddle.broadcast_tensors(
            [self.loc, self.scale, value]
        )

        return paddle.subtract(
            -(
                paddle.square(paddle.divide(paddle.subtract(value, loc), scale))
            ).log1p(),
            paddle.add(
                paddle.full(loc.shape, np.log(np.pi), dtype=self.dtype),
                scale.log(),
            ),
            name=name,
        )

    def cdf(self, value):
        r"""Cumulative distribution function(CDF) evaluated at value.

        .. math::

            { \frac{1}{\pi} \arctan\left(\frac{x-loc}{ scale}\right)+\frac{1}{2}\! }

        Args:
            value (Tensor): Value to be evaluated.

        Returns:
            Tensor: CDF evaluated at value.

        Examples:

            .. code-block:: python

                import paddle
                from paddle.distribution import Cauchy

                # init Cauchy with float
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.cdf(paddle.to_tensor(1.5)))
347 348
                # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        0.77443725)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

                # broadcast to value
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.cdf(paddle.to_tensor([1.5, 5.1])))
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [0.77443725, 0.92502367])

                # init Cauchy with N-Dim tensor
                rv = Cauchy(loc=paddle.to_tensor([0.1, 0.1]), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.cdf(paddle.to_tensor([1.5, 5.1])))
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [0.80256844, 0.87888104])

                # init Cauchy with N-Dim tensor with broadcast
                rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.cdf(paddle.to_tensor([1.5, 5.1])))
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [0.80256844, 0.87888104])
        """
        name = self.name + '_cdf'

        if not isinstance(value, framework.Variable):
            raise TypeError(
                f"Expected type of value is Variable, but got {type(value)}"
            )

        value = self._check_values_dtype_in_probs(self.loc, value)
        loc, scale, value = paddle.broadcast_tensors(
            [self.loc, self.scale, value]
        )

        return (
            paddle.atan(
                paddle.divide(paddle.subtract(value, loc), scale), name=name
            )
            / np.pi
            + 0.5
        )

    def entropy(self):
        r"""Entropy of Cauchy distribution.

        .. math::

            { \log(4\pi scale)\! }

        Returns:
            Tensor: Entropy of distribution.

        Examples:

            .. code-block:: python

                import paddle
                from paddle.distribution import Cauchy

                # init Cauchy with float
                rv = Cauchy(loc=0.1, scale=1.2)
                print(rv.entropy())
                # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        2.71334577)

                # init Cauchy with N-Dim tensor
                rv = Cauchy(loc=paddle.to_tensor(0.1), scale=paddle.to_tensor([1.0, 2.0]))
                print(rv.entropy())
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [2.53102422, 3.22417140])

        """
        name = self.name + '_entropy'
        return paddle.add(
            paddle.full(self.loc.shape, np.log(4 * np.pi), dtype=self.dtype),
            self.scale.log(),
            name=name,
        )

    def kl_divergence(self, other):
        """The KL-divergence between two Cauchy distributions.

        Note:
            [1] Frédéric Chyzak, Frank Nielsen, A closed-form formula for the Kullback-Leibler divergence between Cauchy distributions, 2019

        Args:
            other (Cauchy): instance of Cauchy.

        Returns:
            Tensor: kl-divergence between two Cauchy distributions.

        Examples:

            .. code-block:: python

                import paddle
                from paddle.distribution import Cauchy

                rv = Cauchy(loc=0.1, scale=1.2)
                rv_other = Cauchy(loc=paddle.to_tensor(1.2), scale=paddle.to_tensor([2.3, 3.4]))
                print(rv.kl_divergence(rv_other))
                # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
                #        [0.19819736, 0.31532931])
        """
        name = self.name + '_kl_divergence'

        if not isinstance(other, Cauchy):
            raise TypeError(
                f"Expected type of other is Cauchy, but got {type(other)}"
            )

        a_loc = self.loc
        b_loc = other.loc

        a_scale = self.scale
        b_scale = other.scale

        t1 = paddle.add(
            paddle.pow(paddle.add(a_scale, b_scale), 2),
            paddle.pow(paddle.subtract(a_loc, b_loc), 2),
        ).log()
        t2 = (4 * paddle.multiply(a_scale, b_scale)).log()

        return paddle.subtract(t1, t2, name=name)