pooling.py 5.0 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle.fluid.layers import utils
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
Z
zhangkaihuo 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
from paddle.nn.functional.pooling import _update_padding_nd

__all__ = []


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
               data_format="NDHWC",
               name=None):
    """
    Implements sparse max pooling 3d operation.
    See more details in :ref:`api_sparse_pooling_MaxPool3d` .

    Args:
        x (Tensor): The input SparseCooTensor of pooling operator, which is a 5-D tensor with
                          shape [N, D, H, W, C]. The format of input tensor `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`. Currently only support `"NDHWC"` .
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
    
    Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard

            with _test_eager_guard():
                dense_x = paddle.randn((1, 4, 4, 4, 3))
                sparse_x = dense_x.to_sparse_coo(4)
                kernel_sizes = [3, 3, 3]
                paddings = [0, 0, 0]
                strides = [1, 1, 1]
73
                out = paddle.sparse.nn.functional.max_pool3d(sparse_x, kernel_sizes, stride=strides, padding=paddings)
Z
zhangkaihuo 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
                #[1, 2, 2, 2, 3]
    """

    assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode"
    assert x.is_sparse_coo(
    ), "Currently, sparse.relu only support the input of SparseCooTensor"
    assert data_format == 'NDHWC', "Currently, sparse.max_pool3d only support data format of 'NDHWC'"

    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

    channel_last = True

90 91 92 93
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
Z
zhangkaihuo 已提交
94 95 96 97

    #TODO(zkh2016): remove the dependency on dilation from the backend
    dilation = [1, 1, 1]

98
    return _C_ops.sparse_maxpool(x, kernel_size, padding, dilation, stride)