loss_scaler.py 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from paddle.fluid import core
from paddle.fluid.dygraph import to_variable
from paddle.fluid.framework import _varbase_creator, _dygraph_tracer, dygraph_only
from paddle.fluid.data_feeder import check_type
from ...wrapped_decorator import signature_safe_contextmanager, wrap_decorator
import warnings
import numpy as np
W
wanghuancoder 已提交
23
from paddle import _C_ops
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

__all__ = ['AmpScaler']


class AmpScaler(object):
    """
    :api_attr: imperative

    AmpScaler is used for Auto-Mixed-Precision training/inferring in imperative
    mode. It controls the scaling of loss, helps avoiding numerical overflow.
    The object of this class has two methods `scale()`, `minimize()`.

    `scale()` is used to multiply the loss by a scale ratio.
    `minimize()` is similar as `Optimizer.minimize()`, performs parameters updating.

    Commonly, it is used together with `amp_guard` to achieve Auto-Mixed-Precision in 
    imperative mode.

    Args:
        enable(bool, optional): Enable loss scaling or not. Default is True.
        init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15.
        incr_ratio(float, optional): The multiplier to use when increasing the loss 
                        scaling. Default is 2.0.
        decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing 
                        the loss scaling. Default is 0.5.
        incr_every_n_steps(int, optional): Increases loss scaling every n consecutive 
                                steps with finite gradients. Default is 1000.
        decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n 
                                    accumulated steps with nan or inf gradients. Default is 2.
        use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
    Returns:
        An AmpScaler object.

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
        with fluid.dygraph.guard():
            model = fluid.dygraph.Conv2D(3, 2, 3)
            optimizer = fluid.optimizer.SGDOptimizer(
                    learning_rate=0.01, parameter_list=model.parameters())
            scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
            data = fluid.dygraph.to_variable(data)
            with fluid.dygraph.amp_guard():
                conv = model(data)
                loss = fluid.layers.reduce_mean(conv)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)         
    """

    @dygraph_only
    def __init__(self,
                 enable=True,
                 init_loss_scaling=2.**15,
                 incr_ratio=2.0,
                 decr_ratio=0.5,
                 incr_every_n_steps=1000,
                 decr_every_n_nan_or_inf=1,
                 use_dynamic_loss_scaling=True):

        tracer = _dygraph_tracer()
        if not tracer:
            raise ValueError(
                "current_tracer is None, maybe it is not in imperative mode.")

T
taixiurong 已提交
94 95
        if enable and not (tracer._expected_place.is_gpu_place() or
                           tracer._expected_place.is_xpu_place()):
96
            warnings.warn(
T
taixiurong 已提交
97
                'AmpScaler can only be enabled on CUDAPlace and XPUPlace, current place is %s, so it makes no effect.'
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
                % tracer._expected_place)
            enable = False

        self._enable = enable

        if self._enable:
            assert incr_ratio > 1.0, "The incr_ratio must be > 1.0."
            assert decr_ratio < 1.0, "The decr_ratio must be < 1.0."

            self._init_loss_scaling = init_loss_scaling
            self._incr_ratio = incr_ratio
            self._decr_ratio = decr_ratio
            self._incr_every_n_steps = incr_every_n_steps
            self._decr_every_n_nan_or_inf = decr_every_n_nan_or_inf
            self._incr_count = 0
            self._decr_count = 0
            self._use_dynamic_loss_scaling = use_dynamic_loss_scaling

            self._found_inf = to_variable(np.array([0]).astype(np.bool))
            self._scale = to_variable(
                np.array([self._init_loss_scaling]).astype(np.float32))
            self._cache_founf_inf = None

    def scale(self, var):
        """
        Multiplies a variable(Tensor) by the scale factor and returns scaled outputs.  
        If this instance of :class:`AmpScaler` is not enabled, output are returned unmodified.

        Args:
            var (Variable):  The variable to scale.
        Returns:
            The scaled variable or original variable.
        
        Examples:
            .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid

            data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
            with fluid.dygraph.guard():
                model = fluid.dygraph.Conv2D(3, 2, 3)
                optimizer = fluid.optimizer.SGDOptimizer(
                        learning_rate=0.01, parameter_list=model.parameters())
                scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
                data = fluid.dygraph.to_variable(data)
                with fluid.dygraph.amp_guard():
                    conv = model(data)
                    loss = fluid.layers.reduce_mean(conv)
                    scaled = scaler.scale(loss)
                    scaled.backward()
                    scaler.minimize(optimizer, scaled) 
        """
        check_type(var, "var", core.VarBase, 'AmpScaler.scale()')

        if not self._enable:
            return var

        return var * self._scale

    def minimize(self, optimizer, *args, **kwargs):
        """
        This function is similar as `Optimizer.minimize()`, which performs parameters updating.
        
        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
        Otherwise, it first unscales the scaled gradients of parameters, then updates the parameters.

        Finally, the loss scaling ratio is updated.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
            args:  Arguments, which will be forward to `optimizer.minimize()`.
            kwargs: Keyword arguments, which will be forward to `Optimizer.minimize()`.

        Examples:
            .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid

            data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
            with fluid.dygraph.guard():
                model = fluid.dygraph.Conv2D(3, 2, 3)
                optimizer = fluid.optimizer.SGDOptimizer(
                        learning_rate=0.01, parameter_list=model.parameters())
                scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
                data = fluid.dygraph.to_variable(data)
                with fluid.dygraph.amp_guard():
                    conv = model(data)
                    loss = fluid.layers.reduce_mean(conv)
                    scaled = scaler.scale(loss)
                    scaled.backward()
                    scaler.minimize(optimizer, scaled) 
        """
        if not self._enable:
            return optimizer.minimize(*args, **kwargs)

        #  unscale the grad
        self._unscale(optimizer)

        optimize_ops, params_grads = (None, None)

        if self._found_inf:
            self._cache_founf_inf = True
        else:
            optimize_ops, params_grads = optimizer.minimize(*args, **kwargs)
            self._cache_founf_inf = False

        if self._use_dynamic_loss_scaling:
            # uopdate the scale
            self._update()

        return optimize_ops, params_grads

    def _unscale(self, optimizer):
        if not self._enable:
            return
215 216 217 218

        if getattr(optimizer, '_param_groups', None) and isinstance(
                optimizer._param_groups[0], dict):
            param_grads = []
219 220
            param_grads_fp16 = []
            param_grads_fp32 = []
221 222 223 224
            for group in optimizer._param_groups:
                for param in group['params']:
                    if param._grad_ivar() is not None:
                        param_grads.append(param._grad_ivar())
225 226 227 228 229
                        if param._grad_ivar(
                        ).dtype == core.VarDesc.VarType.FP16:
                            param_grads_fp16.append(param._grad_ivar())
                        else:
                            param_grads_fp32.append(param._grad_ivar())
230 231 232 233 234
        else:
            param_grads = [
                param._grad_ivar() for param in optimizer._parameter_list
                if param._grad_ivar() is not None
            ]
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            param_grads_fp16 = [
                param._grad_ivar() for param in optimizer._parameter_list
                if (param._grad_ivar() is not None
                    ) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP16
                           )
            ]
            param_grads_fp32 = [
                param._grad_ivar() for param in optimizer._parameter_list
                if (param._grad_ivar() is not None
                    ) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP32
                           )
            ]
        temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool))
        temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool))
        if len(param_grads_fp16):
            _C_ops.check_finite_and_unscale(param_grads_fp16, self._scale,
                                            param_grads_fp16,
                                            temp_found_inf_fp16)
        if len(param_grads_fp32):
            _C_ops.check_finite_and_unscale(param_grads_fp32, self._scale,
                                            param_grads_fp32,
                                            temp_found_inf_fp32)
        self._found_inf = temp_found_inf_fp16 or temp_found_inf_fp32
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    def _update(self):
        """
        Updates the loss_scaling.
        """
        if not self._enable:
            return

        if self._cache_founf_inf:
            self._incr_count = 0
            self._decr_count = self._decr_count + 1
            if self._decr_count == self._decr_every_n_nan_or_inf:
                print(
                    'Found inf or nan, current scale is: {}, decrease to: {}*{}'.
                    format(
                        float(self._scale),
                        float(self._scale), float(self._decr_ratio)))
                self._scale = self._scale * self._decr_ratio
                self._decr_count = 0
        else:
            self._decr_count = 0
            self._incr_count = self._incr_count + 1
            if self._incr_count == self._incr_every_n_steps:
                self._scale = self._scale * self._incr_ratio
                self._incr_count = 0

        return
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

    def is_enable(self):
        """
        Enable loss scaling or not.

        Returns:
            bool: enable loss scaling return True else return False.
        """
        return self._enable

    def is_use_dynamic_loss_scaling(self):
        """
        Whether to use dynamic loss scaling.

        Returns:
            bool: if fixed loss_scaling is used return False, if the loss scaling is updated dynamicly return true.
        """
        return self._use_dynamic_loss_scaling

    def get_init_loss_scaling(self):
        """
        Return the initial loss scaling factor.

        Reurns:
            float:  the initial loss scaling factor.
        """
        return self._init_loss_scaling

    def set_init_loss_scaling(self, new_init_loss_scaling):
        """
        Set the initial loss scaling factor by `new_init_loss_scaling`.

        Args:
            new_init_loss_scaling(int):  The new_init_loss_scaling used to update initial loss scaling factor.s
        """
        self._init_loss_scaling = new_init_loss_scaling
        self._scale = to_variable(
            np.array([self._init_loss_scaling]).astype(np.float32))

    def get_incr_ratio(self):
        """
        Return the multiplier to use when increasing the loss scaling.

        Reurns:
            float:  the multiplier to use when increasing the loss scaling.
        """
        return self._incr_ratio

    def set_incr_ratio(self, new_incr_ratio):
        """
        Set the multiplier to use when increasing the loss scaling by `new_incr_ratio`, `new_incr_ratio` should > 1.0.

        Args:
            new_incr_ratio(float):  The new_incr_ratio used to update the multiplier to use when increasing the loss scaling.
        """
        assert new_incr_ratio > 1.0, "The new_incr_ratio must be > 1.0."
        self._incr_ratio = new_incr_ratio

    def get_decr_ratio(self):
        """
        Get the less-than-one-multiplier to use when decreasing the loss scaling.

        Reurns:
            float:  the less-than-one-multiplier to use when decreasing the loss scaling.
        """
        return self._decr_ratio

    def set_decr_ratio(self, new_decr_ratio):
        """
        Set the less-than-one-multiplier to use when decreasing the loss scaling by `new_incr_ratio`, `new_decr_ratio` should < 1.0.

        Args:
            new_decr_ratio(float):  The new_decr_ratio used to update the less-than-one-multiplier to use when decreasing the loss scaling.
        """
        assert new_decr_ratio < 1.0, "The new_decr_ratio must be < 1.0."
        self._decr_ratio = new_decr_ratio

    def get_incr_every_n_steps(self):
        """
        Return the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Reurns:
            int:  the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        """
        return self._incr_every_n_steps

    def set_incr_every_n_steps(self, new_incr_every_n_steps):
        """
        Set the num `n` by `new_incr_every_n_steps`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Args:
            new_incr_every_n_steps(int):  The new_incr_every_n_steps used to update the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        """
        self._incr_every_n_steps = new_incr_every_n_steps

    def get_decr_every_n_nan_or_inf(self):
        """
        Return the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Reurns:
            int:  the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        """
        return self._decr_every_n_nan_or_inf

    def set_decr_every_n_nan_or_inf(self, new_decr_every_n_nan_or_inf):
        """
        Set the num `n` by `new_decr_every_n_nan_or_inf`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Args:
            new_decr_every_n_nan_or_inf(int):  The new_decr_every_n_nan_or_inf used to update the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        """
        self._decr_every_n_nan_or_inf = new_decr_every_n_nan_or_inf
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

    def state_dict(self):
        """
        Returns the state of the scaler as a `dict`, If this instance is not enabled, returns an empty dict.

        Reurns:
            A dict of scaler includes:
            scale (tensor): The loss scaling factor.
            incr_ratio(float): The multiplier to use when increasing the loss scaling.
            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling.
            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients.
            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients.
            incr_count(int): The number of recent consecutive unskipped steps.
            decr_count(int): The number of recent consecutive skipped steps.
            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
        """
        return {
            "scale": self._scale.numpy(),
            "incr_ratio": self._incr_ratio,
            "decr_ratio": self._decr_ratio,
            "incr_every_n_steps": self._incr_every_n_steps,
            "decr_every_n_nan_or_inf": self._decr_every_n_nan_or_inf,
            "incr_count": self._incr_count,
            "decr_count": self._decr_count,
            "use_dynamic_loss_scaling": self._use_dynamic_loss_scaling
        } if self._enable else {}

    def load_state_dict(self, state_dict):
        """
        Loads the scaler state.
        
        Args:
           state_dict(dict): scaler state.  Should be an object returned from a call to `AmpScaler.state_dict()`.
        """
        if not self._enable:
            return

        if len(state_dict) == 0:
            raise RuntimeError(
                "The input state dict is empty, possibly because it was saved "
                "from a disabled instance of GradScaler.")

        self._init_loss_scaling = state_dict["scale"][0]
        self._scale = to_variable(
            np.array([self._init_loss_scaling]).astype(np.float32))
        self._incr_ratio = state_dict["incr_ratio"]
        self._decr_ratio = state_dict["decr_ratio"]
        self._incr_every_n_steps = state_dict["incr_every_n_steps"]
        self._decr_every_n_nan_or_inf = state_dict["decr_every_n_nan_or_inf"]
        self._incr_count = state_dict["incr_count"]
        self._decr_count = state_dict["decr_count"]
        self._use_dynamic_loss_scaling = state_dict["use_dynamic_loss_scaling"]