ast_utils.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import ast
18
import astor
19 20 21 22 23 24 25 26 27 28 29
import gast
import six
import copy
import tempfile
import imp
import os
import atexit
from collections import defaultdict

from paddle.fluid import unique_name

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
TRUE_FUNC_PREFIX = 'true_fn'
FALSE_FUNC_PREFIX = 'false_fn'


class IsControlFlowIfVisitor(gast.NodeTransformer):
    """
    Judge whether the node.test from Dygraph code dependent on paddle Tensor.
    If does, it should satisfy:
        1. must involve at least one var whose type is Tensor.
        2. the Tensor var should call `.numpy()[]` interface or Tensor.shape is [1].
        3. involve Tensor.shape[i] and the shape[i] is unknown in compile time.
    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

    def __init__(self, node):
        self.node = node
        self.is_control_flow = False

    def ast_visit(self):
        self.visit(self.node)
        return self.is_control_flow

    def visit_Compare(self, node):
        for child in gast.walk(node):
            if isinstance(child, gast.Subscript):
                self._visit_Subscript(child)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            self.is_control_flow = (attr_node.attr == 'numpy')
77 78 79 80 81 82 83


def is_control_flow_if(node):
    """
    Determine whether the node is a plain python `if statement` or
    control flow in Paddle.
    """
84 85 86 87
    assert isinstance(
        node, gast.AST
    ), "Type of input node should be gast.AST, but received %s." % type(node)
    return IsControlFlowIfVisitor(node).ast_visit()
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106


def get_name_ids(nodes, not_name_set=None, node_black_list=None):
    """
    Return all ast.Name.id of python variable in nodes.
    """
    if not isinstance(nodes, (list, tuple, set)):
        raise ValueError(
            "nodes must be one of list, tuple, set, but received %s" %
            type(nodes))
    if not_name_set is None:
        not_name_set = set()

    def update(old_dict, new_dict):
        for k, v in new_dict.items():
            old_dict[k].extend(v)

    name_ids = defaultdict(list)
    for node in nodes:
107
        if node_black_list and node in node_black_list: break
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        if isinstance(node, gast.AST):
            # In two case, the ast.Name should be filtered.
            # 1. Function name like `my_func` of my_func(x)
            # 2. api prefix like `fluid` of `fluid.layers.mean`
            if isinstance(node, gast.Return):
                continue
            elif isinstance(node, gast.Call) and isinstance(node.func,
                                                            gast.Name):
                not_name_set.add(node.func.id)
            elif isinstance(node, gast.Attribute) and isinstance(node.value,
                                                                 gast.Name):
                not_name_set.add(node.value.id)
            if isinstance(
                    node, gast.Name
            ) and node.id not in name_ids and node.id not in not_name_set:
                if isinstance(node.ctx, (gast.Store, gast.Load, gast.Param)):
                    name_ids[node.id].append(node.ctx)
            else:
                if isinstance(node, gast.Assign):
                    node = copy.copy(node)
                    node._fields = ('value', 'targets')
                for field, value in gast.iter_fields(node):
                    value = value if isinstance(value, list) else [value]
                    update(name_ids,
                           get_name_ids(value, not_name_set, node_black_list))
    return name_ids


def parse_cond_args(var_ids_dict, return_ids=None, ctx=gast.Load):
    """
    Find out the ast.Name.id list of input by analyzing node's AST information.
    """

    name_ids = [
        var_id for var_id, var_ctx in var_ids_dict.items()
        if isinstance(var_ctx[0], ctx)
    ]
    if return_ids:
        new_args = set(return_ids) - set(name_ids)
        name_ids.extend(list(new_args))
    name_ids.sort()
    args = [
        gast.Name(
            id=name_id, ctx=gast.Load(), annotation=None, type_comment=None)
        for name_id in name_ids
    ]
    arguments = gast.arguments(
        args=args,
        posonlyargs=[],
        vararg=None,
        kwonlyargs=[],
        kw_defaults=None,
        kwarg=None,
        defaults=[])
    return arguments


def parse_cond_return(parent_vars_dict, if_vars_dict, else_vars_dict):
    """
    Find out the ast.Name list of output by analyzing node's AST information.
    Following conditions should be satisfied while determining whether a variable is a return value:
    1. the var in parent scope is modified in if/else node.
    2. new var is both created in if and else node.

    If different var is modified in if and else node, it should add the var in return_ids
    of different node.
    For example:
            x, y = 5, 10
            if x > 4:
                x = x+1
                z = x*x
            else:
                y = y - 1
                z = y*y

    The return_ids should be (x, y, z) for `if` and `else`node.
    """

    def _is_return_var(ctxs):
        for ctx in ctxs:
            if isinstance(ctx, (gast.Store, gast.Param)):
                return True
        return False

    def _vars_with_store(ids_dict):
        vars = []
        for k, ctxs in ids_dict.items():
            if _is_return_var(ctxs):
                vars.append(k)
        return vars

    def _candidate_vars(child_dict, parent_dict):
        return set([
            var for var in _vars_with_store(child_dict) if var in parent_dict
        ])

    # 1. the var in parent_ids is modified in if/else node.
    if_candidate_vars = _candidate_vars(if_vars_dict, parent_vars_dict)
    else_candidate_vars = _candidate_vars(else_vars_dict, parent_vars_dict)

    # 2. new var is both created in if and else node.
    if_new_vars = set([
        var for var in _vars_with_store(if_vars_dict)
        if var not in parent_vars_dict
    ])
    else_new_vars = set([
        var for var in _vars_with_store(else_vars_dict)
        if var not in parent_vars_dict
    ])
    new_vars = if_new_vars & else_new_vars

    # generate return_ids of if/else node.
    modified_vars = if_candidate_vars | else_candidate_vars
    return_ids = list(modified_vars | new_vars)
    return_ids.sort()

    return return_ids, list(modified_vars - new_vars)


def generate_name_node(name_ids, ctx=gast.Load()):
    """
    Generate list or gast.Tuple of ast.Name for Return statement.
    """
    if isinstance(name_ids, six.string_types):
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
        raise TypeError('name_ids must be list or tuple or set, but received %s'
                        % type(type(name_ids)))
    gast_names = [
        gast.Name(
            id=name_id, ctx=ctx, annotation=None, type_comment=None)
        for name_id in name_ids
    ]
    if len(gast_names) == 1:
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
    nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None)
    return func_def_node


def transform_if_else(node, root):
    """
    Transform ast.If into control flow statement of Paddle static graph.
    """
    parent_name_ids = get_name_ids([root], node_black_list=[node])
    if_name_ids = get_name_ids(node.body)
    else_name_ids = get_name_ids(node.orelse)

    return_name_ids, modified_name_ids = parse_cond_return(
        parent_name_ids, if_name_ids, else_name_ids)

    true_func_node = create_funcDef_node(
        node.body,
279
        name=unique_name.generate(TRUE_FUNC_PREFIX),
280 281 282 283
        input_args=parse_cond_args(if_name_ids, modified_name_ids),
        return_name_ids=return_name_ids)
    false_func_node = create_funcDef_node(
        node.orelse,
284
        name=unique_name.generate(FALSE_FUNC_PREFIX),
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        input_args=parse_cond_args(else_name_ids, modified_name_ids),
        return_name_ids=return_name_ids)

    return true_func_node, false_func_node, return_name_ids


def create_cond_node(return_name_ids, pred, true_func, false_func):
    """
    Create `fluid.layers.cond(pred, true_fn, false_fn)` to replace
    original `python if/else` statement.
    """
    # TODO(Aurelius84): should replace the api hard code.
    cond_api = gast.parse('fluid.layers.cond').body[0].value
    true_func_lambda = gast.Lambda(
        args=gast.arguments(
            args=[],
            posonlyargs=[],
            vararg=None,
            kwonlyargs=[],
            kw_defaults=None,
            kwarg=None,
            defaults=[]),
        body=gast.Call(
            func=gast.Name(
                id=true_func.name,
                ctx=gast.Load(),
                annotation=None,
                type_comment=None),
            args=[true_func.args],
            keywords=[]))
    false_func_lambda = gast.Lambda(
        args=gast.arguments(
            args=[],
            posonlyargs=[],
            vararg=None,
            kwonlyargs=[],
            kw_defaults=None,
            kwarg=None,
            defaults=[]),
        body=gast.Call(
            func=gast.Name(
                id=false_func.name,
                ctx=gast.Load(),
                annotation=None,
                type_comment=None),
            args=[false_func.args],
            keywords=[]))
    cond_layer = gast.Call(
        func=cond_api,
        args=[pred, true_func_lambda, false_func_lambda],
        keywords=[])
    targets = [generate_name_node(return_name_ids, ctx=gast.Store())]
    assign_node = gast.Assign(targets=targets, value=cond_layer)

    return assign_node


def ast_to_func(ast_root, func_name, delete_on_exit=True):
    """
    Transform modified AST of decorated function into python callable object.
    """
    if not isinstance(ast_root, (gast.AST, ast.AST)):
        raise TypeError(
            "Type of ast_root should be gast.AST or ast.AST, but received %s." %
            type(ast_root))
    if isinstance(ast_root, gast.AST):
        ast_root = gast.gast_to_ast(ast_root)
    source = astor.to_source(ast_root)
    if six.PY2:
        source = source.encode('utf-8')
        f = tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False)
    else:
        f = tempfile.NamedTemporaryFile(
            mode='w', suffix='.py', delete=False, encoding='utf-8')

360
    # TODO(Aurelius84): more elegant way to transform ast into callable object
361 362
    import_str = "import paddle\n" \
                 "import paddle.fluid as fluid\n" \
363 364 365
                 "import paddle.fluid.layers as layers\n" \
                 "import numpy as np\n" \
                 "import numpy\n"
366 367 368 369 370 371 372 373 374 375 376 377 378 379
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(import_str)
        f.write(source)

    if delete_on_exit:
        atexit.register(lambda: os.remove(f.name))
    module = imp.load_source(module_name, f.name)
    if not hasattr(module, func_name):
        raise ValueError(
            'Function: %s doesn\'t exist in the Module transformed from AST.' %
            func_name)

    return getattr(module, func_name), f.name