pool_kernel.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/pool_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/pooling.h"

namespace phi {
template <typename T, typename Context>
void Pool2dKernel(const Context& ctx,
                  const DenseTensor& x,
                  const std::vector<int>& kernel_size_t,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings_t,
                  bool ceil_mode,
                  bool exclusive,
                  const std::string& data_format,
                  const std::string& pooling_type,
                  bool global_pooling,
                  bool adaptive,
                  const std::string& padding_algorithm,
                  DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;

  std::vector<int> paddings(paddings_t);
  std::vector<int> kernel_size(kernel_size_t);

  PADDLE_ENFORCE_EQ(kernel_size.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "The Pool2d XPU OP only support 2 dimension pooling!"));

  PADDLE_ENFORCE_EQ(
      data_format,
      "NCHW",
      phi::errors::InvalidArgument("The Pool2d XPU OP only support "
                                   "data_format is 'NCHW', but received %s",
                                   data_format));

  if (global_pooling) {
    for (size_t i = 0; i < kernel_size.size(); ++i) {
      paddings[i] = 0;
      kernel_size[i] = static_cast<int>(x.dims()[i + 2]);
    }
  }

  const int n = x.dims()[0];
  const int c = x.dims()[1];
  const int in_h = x.dims()[2];
  const int in_w = x.dims()[3];

  const int out_h = out->dims()[2];
  const int out_w = out->dims()[3];

  DDim data_dims;

  data_dims = slice_ddim(x.dims(), 2, x.dims().size());
  funcs::UpdatePadding(&paddings,
                       global_pooling,
                       adaptive,
                       padding_algorithm,
                       data_dims,
                       strides,
                       kernel_size);

  if (ceil_mode) {
    int in_h_ceil = (out_h - 1) * strides[0] + kernel_size[0] - 2 * paddings[0];
    int in_w_ceil = (out_w - 1) * strides[1] + kernel_size[1] - 2 * paddings[2];

    paddings[1] += (in_h_ceil - in_h);
    paddings[3] += (in_w_ceil - in_w);
  }

  ctx.template Alloc<T>(out);
  int* index_data = nullptr;
  int r = xpu::Error_t::SUCCESS;
  if (!adaptive) {
    if (pooling_type == "max") {
      r = xpu::max_pool2d<XPUType>(
          ctx.x_context(),
          reinterpret_cast<const XPUType*>(x.data<T>()),
          reinterpret_cast<XPUType*>(out->data<T>()),
          index_data,
          n,
          c,
          in_h,
          in_w,
          kernel_size,
          strides,
          paddings,
          true);
    } else if (pooling_type == "avg") {
      r = xpu::avg_pool2d<XPUType>(
          ctx.x_context(),
          reinterpret_cast<const XPUType*>(x.data<T>()),
          reinterpret_cast<XPUType*>(out->data<T>()),
          n,
          c,
          in_h,
          in_w,
          kernel_size,
          strides,
          paddings,
          !exclusive,
          true);
    } else {
      PADDLE_THROW(phi::errors::InvalidArgument(
          "Unsupported pooling type for kunlun ", pooling_type));
    }
  } else {
    if (pooling_type == "max") {
      r = xpu::adaptive_max_pool2d<XPUType>(
          ctx.x_context(),
          reinterpret_cast<const XPUType*>(x.data<T>()),
          reinterpret_cast<XPUType*>(out->data<T>()),
          index_data,
          n,
          c,
          in_h,
          in_w,
          out_h,
          out_w,
          true);
    } else if (pooling_type == "avg") {
      r = xpu::adaptive_avg_pool2d<XPUType>(
          ctx.x_context(),
          reinterpret_cast<const XPUType*>(x.data<T>()),
          reinterpret_cast<XPUType*>(out->data<T>()),
          n,
          c,
          in_h,
          in_w,
          out_h,
          out_w,
          true);
    } else {
      PADDLE_THROW(phi::errors::InvalidArgument(
          "Unsupported pooling type for kunlun ", pooling_type));
    }
  }
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "pool2d");
}
}  // namespace phi

PD_REGISTER_KERNEL(
    pool2d, XPU, ALL_LAYOUT, phi::Pool2dKernel, float, phi::dtype::float16) {}