completion.py 84.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17 18 19

from paddle.fluid import core

20
from .utils import is_naive_data_parallel, get_logger
Z
zhaoyingli 已提交
21
from .utils import is_gradient_clip_op, __no_shape_var_type__
22
from .operators import find_compatible_distributed_operator_impls
23
from .dist_context import _node_id
24 25
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
26
from .process_mesh import ProcessMesh
27
from .process_group import get_world_process_group
28
from paddle.distributed.fleet.meta_optimizers.common import OpRole
29 30


31 32 33 34
def compute_compatible_process_mesh(process_mesh_list):
    """Compute the compatible process mesh given a list of process meshes."""
    if not process_mesh_list:
        return None
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    def _compute_compatible_process_mesh_two(pm1, pm2):
        if pm1 is None:
            return True, pm2
        if pm2 is None:
            return True, pm1
        if pm1 == pm2:
            return True, pm1
        if pm1.processes == pm2.processes:
            if len(pm1.topology) >= len(pm2.topology):
                return True, pm1
            else:
                return True, pm2
        process_set1 = set(pm1.processes)
        process_set2 = set(pm2.processes)
        if process_set1.issubset(process_set2):
            return True, pm2
        if process_set2.issubset(process_set1):
            return True, pm1
        return False, None

    compatible_result = None
    for process_mesh in process_mesh_list:
        compatible, compatible_result = _compute_compatible_process_mesh_two(
59 60
            compatible_result, process_mesh
        )
61 62 63 64 65 66 67 68 69
        if not compatible:
            return None
    return copy.deepcopy(compatible_result)


def compute_compatible_dim_mapping(dim_mapping_list):
    """Compute the compatible dim mapping given a list of dim mapping."""
    if not dim_mapping_list:
        return None
70

71 72 73 74 75 76 77 78 79 80 81 82
    def _compute_compatible_dim_mapping_two(dm1, dm2):
        if dm1 == -1:
            return True, dm2
        if dm2 == -1:
            return True, dm1
        if dm1 == dm2:
            return True, dm1
        return False, None

    compatible_result = -1
    for mapping in dim_mapping_list:
        compatible, compatible_result = _compute_compatible_dim_mapping_two(
83 84
            compatible_result, mapping
        )
85 86 87 88 89 90 91
        if not compatible:
            return None
    return compatible_result


def compute_compatible_dims_mapping(dims_mapping_list):
    """Compute the compatible dims mapping given a list of dims mapping.
92
    Each of dims mapping is also a list.
93
    """
94 95 96 97 98 99 100 101 102 103 104
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
        if dims_mapping is None:
            return None
        if len(dims_mapping) != length:
            return None
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
105 106
            list(dim_mappings)
        )
107 108 109 110 111 112
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


113 114 115 116 117 118 119 120 121 122 123 124 125 126
def merge_process_mesh_two(pm1, pm2):
    process_set1 = set()
    process_set2 = set()
    if pm1 is None and pm2 is None:
        return None
    if pm1 is not None:
        process_set1 = set(pm1.processes)
    if pm2 is not None:
        process_set2 = set(pm2.processes)
    merged_process_set = process_set1.union(process_set2)
    merged_process_mesh = ProcessMesh(list(merged_process_set))
    return merged_process_mesh


127 128 129 130 131
def _validate_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(
132 133
            process_mesh.topology
        ):
134 135 136 137 138 139 140
            return False
    for i in range(len(process_mesh.topology)):
        if dims_mapping.count(i) > 1:
            return False
    return True


141 142 143 144
class Completer:
    def __init__(self, dist_context):
        assert dist_context is not None
        self._dist_context = dist_context
145
        self._has_prepared = False
146
        self._logger = get_logger(logging.INFO, "Completer")
147 148 149 150 151 152 153

    def _update_tensor_node_dims_mapping(self, tensor_node, fwd=True):
        changed = False
        if (not tensor_node.is_var()) or (tensor_node.var() is None):
            return False
        tensor_desc = tensor_node.var()
        # Skip reader tensor
Z
zhaoyingli 已提交
154
        if tensor_desc.type() in __no_shape_var_type__:
155 156
            return False
        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
157 158
            tensor_node
        )
159 160 161 162 163 164 165 166
        assert tensor_dist_attr is not None
        if tensor_dist_attr.is_annotated("dims_mapping"):
            return False
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        if fwd:
            dims_mapping_list = []
            for pred_op_node in tensor_node.inputs:
                if pred_op_node.op() is not None:
167 168 169 170 171 172
                    if (
                        pred_op_node.op().type() == "create_py_reader"
                        or pred_op_node.op().type()
                        == "create_double_buffer_reader"
                        or pred_op_node.op().type() == "read"
                    ):
173
                        continue
174 175 176 177 178 179 180 181 182
                    op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_graph(
                            pred_op_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
183
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
184 185
                            tensor_desc.name()
                        )
186 187 188
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
189 190 191 192 193
                dims_mapping_list
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, tensor_dist_attr.process_mesh
            ):
194
                return False
195 196 197
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != tensor_dims_mapping
            ):
198
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
199 200
                changed = True
        else:
201 202 203
            dims_mapping_list = []
            for succ_op_node in tensor_node.outputs:
                if succ_op_node.op() is not None:
204 205 206 207 208 209
                    if (
                        succ_op_node.op().type() == "create_py_reader"
                        or succ_op_node.op().type()
                        == "create_double_buffer_reader"
                        or succ_op_node.op().type() == "read"
                    ):
210
                        continue
211 212 213 214 215 216 217 218 219
                    op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_graph(
                            succ_op_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
220
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
221 222
                            tensor_desc.name()
                        )
223 224 225
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
226 227 228 229 230
                dims_mapping_list
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, tensor_dist_attr.process_mesh
            ):
231
                return False
232 233 234
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != tensor_dims_mapping
            ):
235
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
236
                changed = True
237
        return changed
238

239 240 241 242 243 244
    def _update_op_node_dims_mapping(self, op_node, fwd=True):
        changed = False
        if (not op_node.is_op()) or (op_node.op() is None):
            return False
        # Skip reader op
        op_desc = op_node.op()
245 246 247 248 249 250
        if (
            op_desc.type() == "create_py_reader"
            or op_desc.type() == "create_double_buffer_reader"
            or op_desc.type() == "while"
            or op_desc.type() == "read"
        ):
251 252 253
            return False
        dist_op = self._dist_context.get_dist_op_for_graph(op_node)
        op_dist_attr = dist_op.dist_attr
254
        original_op_dist_attr = copy.deepcopy(op_dist_attr)
255 256
        if fwd:
            for tensor_node in op_node.inputs:
257
                if tensor_node.is_var() and tensor_node.var() is not None:
258 259 260 261
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_input_dims_mapping(
262 263
                        tensor_desc.name()
                    ):
264
                        continue
265 266 267 268 269 270 271 272 273
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
274 275
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
276 277 278 279 280 281 282
                            tensor_desc.name()
                        )
                        compatible_dims_mapping = (
                            compute_compatible_dims_mapping(
                                [op_dims_mapping, tensor_dims_mapping]
                            )
                        )
283
                        if not _validate_dims_mapping(
284 285
                            compatible_dims_mapping, op_dist_attr.process_mesh
                        ):
286
                            continue
287 288 289
                        if (compatible_dims_mapping is not None) and (
                            compatible_dims_mapping != op_dims_mapping
                        ):
290
                            op_dist_attr.set_input_dims_mapping(
291 292
                                tensor_desc.name(), compatible_dims_mapping
                            )
293 294
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
295 296 297
            op_dist_impls = find_compatible_distributed_operator_impls(
                dist_op, fwd=True
            )
298 299 300 301 302 303 304 305
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
306 307 308 309
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
310 311 312 313 314 315 316 317
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
318
                    else:
319 320 321 322 323 324 325 326
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
327
        else:
328
            for tensor_node in op_node.outputs:
329
                if tensor_node.is_var() and tensor_node.var() is not None:
330 331 332 333
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_output_dims_mapping(
334 335
                        tensor_desc.name()
                    ):
336
                        continue
337 338 339 340 341 342 343 344 345
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
346 347
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
348 349 350 351 352 353 354
                            tensor_desc.name()
                        )
                        compatible_dims_mapping = (
                            compute_compatible_dims_mapping(
                                [op_dims_mapping, tensor_dims_mapping]
                            )
                        )
355
                        if not _validate_dims_mapping(
356 357
                            compatible_dims_mapping, op_dist_attr.process_mesh
                        ):
358
                            continue
359 360 361
                        if (compatible_dims_mapping is not None) and (
                            compatible_dims_mapping != op_dims_mapping
                        ):
362
                            op_dist_attr.set_output_dims_mapping(
363 364
                                tensor_desc.name(), compatible_dims_mapping
                            )
365 366
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
367
            op_dist_impls = find_compatible_distributed_operator_impls(
368 369
                dist_op, fwd=False
            )
370 371 372 373 374 375 376 377
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
378 379 380 381
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
382 383 384 385 386 387 388 389
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
390
                    else:
391 392 393 394 395 396 397 398
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
399
        return changed
400

401 402 403 404
    def _update_dims_mapping_between_graphs(self):
        changed = False
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
405 406
                parent_node
            )
407
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
408 409 410 411 412 413
                child_node
            )
            if (
                parent_node_dist_attr.process_mesh
                != child_node_dist_attr.process_mesh
            ):
414
                continue
415 416 417
            parent_node_dims_mapping = parent_node_dist_attr.dims_mapping
            child_node_dims_mapping = child_node_dist_attr.dims_mapping
            compatible_dims_mapping = compute_compatible_dims_mapping(
418 419 420 421 422
                [parent_node_dims_mapping, child_node_dims_mapping]
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, parent_node_dist_attr.process_mesh
            ):
423
                return False
424 425 426
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != parent_node_dims_mapping
            ):
427 428
                parent_node_dist_attr.dims_mapping = compatible_dims_mapping
                changed = True
429 430 431
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != child_node_dims_mapping
            ):
432
                child_node_dist_attr.dims_mapping = compatible_dims_mapping
433 434
                changed = True
        return changed
435

436 437 438
    def _update_dims_mapping_for_special(self):
        # Set the dims_mapping of a tensor to the dims_mapping inside the op which produces it
        op_nodes = self._dist_context._serial_ordered_op_nodes
439 440
        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
441 442 443
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
444
        ]
445
        for op_node in op_nodes:
446 447 448 449
            if (
                op_node.op() is not None
                and op_node.op().type() in related_reader_ops
            ):
450
                continue
451 452 453 454 455 456
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() and tensor_node.var() is not None:
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
457 458 459 460 461 462 463 464 465
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
466
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
467 468
                            tensor_desc.name()
                        )
469 470
                        tensor_dist_attr.dims_mapping = op_dims_mapping

471 472 473 474
    def _update_dims_mapping(self):
        # Complete dims_mapping for each node
        reach_fix_point = False
        while not reach_fix_point:
475
            changed = False
476
            for is_fwd in [True, False]:
477 478 479 480 481
                all_nodes = (
                    self._dist_context.serial_ordered_nodes
                    if is_fwd
                    else reversed(self._dist_context.serial_ordered_nodes)
                )
482 483 484
                for node in all_nodes:
                    if node.is_var() and node.var() is not None:
                        tensor_changed = self._update_tensor_node_dims_mapping(
485 486
                            node, fwd=is_fwd
                        )
487 488 489 490
                        if tensor_changed:
                            changed = True
                    if node.is_op() and node.op() is not None:
                        op_changed = self._update_op_node_dims_mapping(
491 492
                            node, fwd=is_fwd
                        )
493 494
                        if op_changed:
                            changed = True
495 496 497
                graph_changed = self._update_dims_mapping_between_graphs()
                if graph_changed:
                    changed = True
498
            if changed:
499
                reach_fix_point = False
500
            else:
501
                reach_fix_point = True
502
        # NOTE: this will be removed after changing the reshard rule
503
        self._update_dims_mapping_for_special()
504

505 506 507 508 509 510
    def _update_process_mesh_by_nearest(self, op_node, nearest_op_node):
        op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
        # Set the process mesh of the op node by its nearest op node
        if not op_dist_attr.is_annotated("process_mesh"):
            process_mesh = op_dist_attr.process_mesh
            nearest_op_dis_attr = self._dist_context.get_dist_attr_for_graph(
511 512
                nearest_op_node
            )
513 514
            nearest_process_mesh = nearest_op_dis_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh(
515 516 517 518 519 520
                [process_mesh, nearest_process_mesh]
            )
            if (
                compatible_process_mesh is not None
                and process_mesh != compatible_process_mesh
            ):
521 522 523 524 525 526 527
                op_dist_attr.process_mesh = compatible_process_mesh
        # Skip the process_mesh setting of inputs and outputs of while_op
        if op_dist_attr.op_type == "while":
            return
        # Set the process mesh of the op node's leaf-inputs
        for tensor_node in op_node.inputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
528 529 530 531 532
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node
                    )
                )
533 534 535 536 537 538
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                # Skip the non-leaf var node
                if len(tensor_node.inputs) != 0:
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
539 540 541 542 543 544
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and tensor_dist_attr.process_mesh != compatible_process_mesh
                ):
545
                    tensor_dist_attr.process_mesh = compatible_process_mesh
546
                # Set the process mesh of the op node's outputs
547 548
        for tensor_node in op_node.outputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
549 550 551 552 553
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node
                    )
                )
554 555 556
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
557 558 559 560 561 562
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and tensor_dist_attr.process_mesh != compatible_process_mesh
                ):
563 564 565 566 567
                    tensor_dist_attr.process_mesh = compatible_process_mesh

    def _update_process_mesh_for_specials(self):
        def _find_nearest_tensor_node_before(nodes, idx, var_name):
            for node in reversed(nodes[:idx]):
568 569 570 571 572
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == var_name
                ):
573 574 575
                    return node

        def _find_nearest_tensor_node_after(nodes, idx, var_name):
576 577 578 579 580 581
            for node in nodes[idx + 1 :]:
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == var_name
                ):
582 583 584 585 586 587 588 589 590 591 592 593 594 595
                    return node

        def _find_nodes_related_to_cond(source_node):
            related_nodes = []
            visited = set()
            frontier = list()
            frontier.append(source_node)
            # BFS
            while len(frontier) != 0:
                cur = frontier[0]
                frontier = frontier[1:]
                if _node_id(cur) in visited:
                    continue
                # TODO: need more restrictions
596 597
                neighbors = cur.inputs + cur.outputs
                for node in neighbors:
598
                    if node.is_var() and node.var() is not None:
599 600 601 602
                        if (
                            node.var().type() != core.VarDesc.VarType.READER
                            and len(node.var().shape()) == 1
                        ):
603 604 605 606
                            frontier.append(node)
                            related_nodes.append(node)
                    if node.is_op() and node.op() is not None:
                        flag = True
607 608 609 610 611
                        if (
                            node.op().type() == "create_py_reader"
                            or node.op().type() == "create_double_buffer_reader"
                            or node.op().type() == "read"
                        ):
612 613
                            flag = False
                        for tensor_node in node.inputs:
614 615 616 617 618 619
                            if (
                                tensor_node.is_var()
                                and tensor_node.var() is not None
                            ):
                                if (
                                    tensor_node.var().type()
Z
zhaoyingli 已提交
620
                                    in __no_shape_var_type__
621 622
                                    or len(tensor_node.var().shape()) != 1
                                ):
623 624 625
                                    flag = False
                                    break
                        for tensor_node in node.outputs:
626 627 628 629 630 631
                            if (
                                tensor_node.is_var()
                                and tensor_node.var() is not None
                            ):
                                if (
                                    tensor_node.var().type()
Z
zhaoyingli 已提交
632
                                    in __no_shape_var_type__
633 634
                                    or len(tensor_node.var().shape()) != 1
                                ):
635 636 637 638 639 640 641 642
                                    flag = False
                                    break
                        if flag:
                            frontier.append(node)
                            related_nodes.append(node)
                visited.add(_node_id(cur))
            return related_nodes

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
        def _make_dims_mapping_replicate(dist_attr):
            if isinstance(dist_attr, TensorDistributedAttribute):
                for i, _ in enumerate(dist_attr.dims_mapping):
                    dist_attr.dims_mapping[i] = -1
            if isinstance(dist_attr, OperatorDistributedAttribute):
                for arg_name in dist_attr.inputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                for arg_name in dist_attr.outputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
659 660 661
                    dist_attr.set_output_dims_mapping(
                        arg_name, new_dims_mapping
                    )
662

663 664 665
        # Amend the process meshes related to while_op
        for while_op_node, while_op_node_idx in self._while_op_nodes.values():
            sub_graph_id = while_op_node.op()._block_attr_id("sub_block")
666
            sub_graph = self._dist_context.serial_graph.get_sub_graph(
667 668
                sub_graph_id
            )
669 670
            sub_graph_nodes = list(sub_graph.all_nodes())
            while_dist_op = self._dist_context.get_dist_op_for_graph(
671 672
                while_op_node
            )
673 674 675 676 677
            while_op_dist_attr = while_dist_op.dist_attr

            # Step 1: set the process mesh of while_op to the merged process mesh of its subblock
            merged_process_mesh = while_op_dist_attr.process_mesh
            for node in sub_graph_nodes:
678 679 680
                if (node.is_var() and node.var() is not None) or (
                    node.is_op() and node.op() is not None
                ):
681 682
                    dist_attr = self._dist_context.get_dist_attr_for_graph(node)
                    merged_process_mesh = merge_process_mesh_two(
683 684
                        merged_process_mesh, dist_attr.process_mesh
                    )
685
            while_op_dist_attr.process_mesh = merged_process_mesh
686
            _make_dims_mapping_replicate(while_op_dist_attr)
687 688 689 690 691 692 693

            # Step 2: set the related nodes of while_op to the process mesh of while_op
            # Step 2.1: Find related nodes of cond var the graph of while_op
            cond_tensor_related_nodes = []
            cond_tensor_name = while_op_node.op().input("Condition")[0]
            cond_tensor_node = None
            for node in while_op_node.inputs:
694 695 696 697 698
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == cond_tensor_name
                ):
699 700 701 702 703
                    cond_tensor_node = node
                    cond_tensor_related_nodes.append(cond_tensor_node)
                    break

            cond_tensor_related_nodes.extend(
704 705
                _find_nodes_related_to_cond(cond_tensor_node)
            )
706 707 708 709

            # Step 2.2: Find related nodes of cond var in the subgraph of while_op
            cond_tensor_node = None
            for node in reversed(sub_graph_nodes):
710 711 712 713 714 715
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == cond_tensor_name
                    and len(node.outputs) == 0
                ):
716 717 718 719
                    cond_tensor_node = node
                    break

            cond_tensor_related_nodes.extend(
720 721
                _find_nodes_related_to_cond(cond_tensor_node)
            )
722 723 724 725
            # Step 2.3: Add the StepScops output of while_op
            stepscopes_tensor_name = while_op_node.op().output("StepScopes")[0]
            stepscopes_tensor_node = None
            for output_node in while_op_node.outputs:
726 727 728 729 730
                if (
                    output_node.is_var()
                    and output_node.var() is not None
                    and output_node.var().name() == stepscopes_tensor_name
                ):
731 732 733 734 735
                    stepscopes_tensor_node = output_node
            cond_tensor_related_nodes.append(stepscopes_tensor_node)
            # Step 2.4: Set the process meshes of all nodes related to cond var to the process mesh of while op
            for node in cond_tensor_related_nodes:
                tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
736 737
                    node
                )
738
                tensor_dist_attr.process_mesh = merged_process_mesh
739
                _make_dims_mapping_replicate(tensor_dist_attr)
740 741 742

            # Step 3: set the process meshes of the inputs in while_op to the process meshes of the outside input nodes
            while_op_inputs_dist_attrs = while_op_dist_attr.inputs_dist_attrs
743 744 745 746
            for (
                tensor_name,
                tensor_dist_attr,
            ) in while_op_inputs_dist_attrs.items():
747
                nearest_tensor_node = _find_nearest_tensor_node_before(
748 749 750 751 752 753 754 755 756 757 758 759
                    self._dist_context.serial_ordered_nodes,
                    while_op_node_idx,
                    tensor_name,
                )
                nearest_tensor_dist_attr = (
                    self._dist_context.get_dist_attr_for_graph(
                        nearest_tensor_node
                    )
                )
                tensor_dist_attr.process_mesh = (
                    nearest_tensor_dist_attr.process_mesh
                )
760 761 762

            # Step 4: set the process meshes of the outputs in while_op to the process meshes of the outside output nodes
            while_op_outputs_dist_attrs = while_op_dist_attr.outputs_dist_attrs
763 764 765 766
            for (
                tensor_name,
                tensor_dist_attr,
            ) in while_op_outputs_dist_attrs.items():
767
                nearest_tensor_node = _find_nearest_tensor_node_before(
768 769 770 771
                    self._dist_context.serial_ordered_nodes,
                    while_op_node_idx,
                    tensor_name,
                )
772 773 774
                if nearest_tensor_node is None:
                    nearest_tensor_node = _find_nearest_tensor_node_after(
                        self._dist_context.serial_ordered_nodes,
775 776 777 778 779 780 781 782 783 784 785
                        while_op_node_idx,
                        tensor_name,
                    )
                nearest_tensor_dist_attr = (
                    self._dist_context.get_dist_attr_for_graph(
                        nearest_tensor_node
                    )
                )
                tensor_dist_attr.process_mesh = (
                    nearest_tensor_dist_attr.process_mesh
                )
786 787 788 789 790 791

        # Amend the process meshes related to array
        for array_node_list in self._array_nodes.values():
            merged_process_mesh = None
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
792 793
                    array_node
                )
794
                merged_process_mesh = merge_process_mesh_two(
795 796
                    merged_process_mesh, dist_attr.process_mesh
                )
797 798
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
799 800
                    array_node
                )
801
                dist_attr.process_mesh = merged_process_mesh
802 803 804 805 806
                _make_dims_mapping_replicate(dist_attr)

    def _update_process_mesh_between_graphs(self):
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
807 808
                parent_node
            )
809
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
810 811 812
                child_node
            )
            parent_node_dist_attr.process_mesh = (
813
                child_node_dist_attr.process_mesh
814 815 816 817 818 819 820 821 822 823 824 825
            )
            compatible_process_mesh = compute_compatible_process_mesh(
                [
                    parent_node_dist_attr.process_mesh,
                    child_node_dist_attr.process_mesh,
                ]
            )
            if (
                compatible_process_mesh is not None
                and parent_node_dist_attr.process_mesh
                != compatible_process_mesh
            ):
826
                parent_node_dist_attr.process_mesh = compatible_process_mesh
827 828 829 830
            if (
                compatible_process_mesh is not None
                and child_node_dist_attr.process_mesh != compatible_process_mesh
            ):
831
                child_node_dist_attr.process_mesh = compatible_process_mesh
832 833 834 835 836 837 838

    def _update_process_mesh(self):
        ordered_op_nodes = self._dist_context._serial_ordered_op_nodes

        # Step 1: Set the annotated process meshes from tensors to the first ops using them
        ordered_tensor_nodes = self._dist_context._serial_ordered_tensor_nodes
        for tensor_node in ordered_tensor_nodes:
839 840 841
            tensor_dist_attr = (
                self._dist_context.get_tensor_dist_attr_for_graph(tensor_node)
            )
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
            if not tensor_dist_attr.is_annotated("process_mesh"):
                continue
            first_op_node = None
            for op_node in ordered_op_nodes:
                # TODO: Need a better rule for the control flow ops.
                # For now, do not set the process mesh of while_op from its inputs
                if op_node.op().type() == "while":
                    continue
                for input_tensor_node in op_node.inputs:
                    if _node_id(tensor_node) == _node_id(input_tensor_node):
                        first_op_node = op_node
                        break
                if first_op_node is not None:
                    break
            if first_op_node is None:
                continue
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(
859 860
                first_op_node
            )
861
            if op_dist_attr is not None and not op_dist_attr.is_annotated(
862 863
                "process_mesh"
            ):
864
                compatible_process_mesh = compute_compatible_process_mesh(
865 866 867 868 869 870
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and op_dist_attr.process_mesh != compatible_process_mesh
                ):
871 872 873 874 875 876 877
                    op_dist_attr.process_mesh = compatible_process_mesh

        # Step 2: set the process meshes of ops with the nearest op before them
        # Step 2.1: find the first op node which has the process mesh
        idx_of_first_op_node_has_process_mesh = -1
        for idx, op_node in enumerate(ordered_op_nodes):
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
878 879 880 881
            if (
                op_dist_attr.process_mesh is not None
                and idx_of_first_op_node_has_process_mesh == -1
            ):
882 883 884 885 886 887
                idx_of_first_op_node_has_process_mesh = idx
                # Reuse the following method to set the related tensors for same op node
                self._update_process_mesh_by_nearest(op_node, op_node)
        # Step 2.2: set the process meshes of ops by the nearest op node after the first op node
        if idx_of_first_op_node_has_process_mesh + 1 > len(ordered_op_nodes):
            return None
888
        for idx, op_node in enumerate(
889 890
            ordered_op_nodes[idx_of_first_op_node_has_process_mesh + 1 :]
        ):
891
            original_idx = idx_of_first_op_node_has_process_mesh + idx + 1
892 893
            nearest_op_node = ordered_op_nodes[original_idx - 1]
            nearest_op_dist_attr = self._dist_context.get_dist_attr_for_graph(
894 895
                nearest_op_node
            )
896 897 898 899 900
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            assert nearest_op_dist_attr.process_mesh is not None
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)
        # Step 2.3: set the process meshes of ops by the nearest op node before the first op node
        nearest_op_node = ordered_op_nodes[
901 902
            idx_of_first_op_node_has_process_mesh
        ]
903 904 905 906 907 908
        for op_node in ordered_op_nodes[:idx_of_first_op_node_has_process_mesh]:
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)

        # Step 3: adjust the process meshes for special ops
        self._update_process_mesh_for_specials()

909
        # Step 4: adjust the process meshes between graphs
910 911
        self._update_process_mesh_between_graphs()

912
    def _prepare(self):
913 914
        if self._has_prepared:
            return
915 916 917 918 919 920 921 922 923 924 925 926 927
        self._while_op_nodes = {}
        self._array_nodes = {}
        self._node_pairs_between_graphs = []
        all_nodes = self._dist_context.serial_ordered_nodes
        for idx, node in enumerate(all_nodes):
            if node.is_op():
                if node.op().type() == "while":
                    self._while_op_nodes[_node_id(node)] = (node, idx)
                if node.op().type() == "read_from_array":
                    array_var_name = node.op().input("X")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
928 929
                    # Add the array input node
                    self._array_nodes[array_var_name].append(node.inputs[0])
930 931 932 933 934 935 936 937 938
                if node.op().type() == "write_to_array":
                    array_var_name = node.op().output("Out")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                    self._array_nodes[array_var_name].append(node.outputs[0])
            if node.is_var() and node.var() is not None:
                if node.node.graph_id() != 0:
                    for before_node in reversed(all_nodes[:idx]):
939 940 941 942 943 944 945
                        if (
                            before_node.is_var()
                            and before_node.var() is not None
                            and before_node.node.graph_id()
                            == node.node.graph_id() - 1
                            and before_node.var().name() == node.var().name()
                        ):
946
                            self._node_pairs_between_graphs.append(
947 948 949 950 951 952 953 954 955 956
                                (before_node, node)
                            )
                    for after_node in all_nodes[idx + 1 :]:
                        if (
                            after_node.is_var()
                            and after_node.var() is not None
                            and after_node.node.graph_id()
                            == node.node.graph_id() - 1
                            and after_node.var().name() == node.var().name()
                        ):
957
                            self._node_pairs_between_graphs.append(
958 959
                                (after_node, node)
                            )
960
        self._has_prepared = True
961

962
    def complete_forward_annotation(self, serial_main_program=None):
963
        """Complete annotation for the partial annotated serial_main_program.
964 965
        Arguments:
            serial_main_program: partial annotated serial_main_program.
966
        Returns:e
967 968 969
            serial_main_program: completed annotated serial_main_program.
        """

970 971 972
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
973
            self._dist_context._serial_main_program = serial_main_program
974

975
        if not is_naive_data_parallel(self._dist_context):
976 977 978 979 980 981 982
            self._dist_context.initialize(with_graph=True)
            self._prepare()
            self._update_process_mesh()
            self._update_dims_mapping()
            # Copy the corresponding distributed attribute from graph to serial_main_program
            self._dist_context.copy_dist_attr_from_graph_to_program()
        else:
Z
zhaoyingli 已提交
983
            self._logger.info("Default distributed attributed will be set.")
984 985 986 987
            self._dist_context.initialize(with_graph=False)
            # A fast and special completion for data parallel
            self._update_dist_attr_for_dp()

988
        # NOTE:[HighOrderGrad] update vars and ops distributed attribute in high order gradient
989
        self._complete_high_order_grad_annotation(serial_main_program)
990 991 992 993 994
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()
        return serial_main_program

995 996 997 998
    def _update_dist_attr_for_dp(self):
        # TODO: we must ensure the world process group contains all ranks
        ranks = get_world_process_group().ranks
        process_mesh = ProcessMesh(ranks)
999 1000 1001 1002 1003 1004 1005

        dist_tensors = self._dist_context._dist_tensors_for_program
        for dist_tensor in dist_tensors.values():
            dist_tensor.dist_attr.process_mesh = process_mesh

        dist_ops = self._dist_context._dist_ops_for_program
        for dist_op in dist_ops.values():
1006 1007 1008 1009
            serial_op = dist_op.serial_op
            op_dist_attr = dist_op.dist_attr
            op_dist_attr.process_mesh = process_mesh
            original_op_dist_attr = copy.deepcopy(op_dist_attr)
1010

1011 1012 1013
            for arg_name in serial_op.input_arg_names:
                serial_tensor = dist_op.get_serial_input(arg_name)
                if not serial_tensor.is_parameter:
1014 1015 1016
                    dist_tensor = (
                        self._dist_context.get_dist_tensor_for_program(
                            serial_tensor
1017 1018
                        )
                    )
1019 1020 1021 1022 1023 1024
                    op_dist_attr = dist_op.dist_attr
                    op_dist_attr.process_mesh = (
                        dist_tensor.dist_attr.process_mesh
                    )
                    op_dist_attr.set_input_dims_mapping(
                        arg_name, dist_tensor.dist_attr.dims_mapping
1025
                    )
1026 1027

            op_dist_impls = find_compatible_distributed_operator_impls(
1028
                dist_op, fwd=True
1029
            )
1030 1031 1032 1033 1034
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                for op_dist_impl in op_dist_impls:
                    op_dist_impl.update_dims_mapping(dist_op)
1035 1036 1037 1038
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
                        op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
                    else:
                        dist_op.dist_attr = backup_op_dist_attr
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
            else:
                dist_op.dist_attr = original_op_dist_attr

1050 1051 1052
            for arg_name in serial_op.output_arg_names:
                op_dist_attr = dist_op.dist_attr
                serial_tensor = dist_op.get_serial_output(arg_name)
Z
zhaoyingli 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
                if serial_op.type in ["fill_constant"]:
                    old_dims_mapping = op_dist_attr.get_output_dims_mapping(
                        arg_name
                    )
                    if len(old_dims_mapping) > 0:
                        new_dims_mapping = [0] + [
                            -1 for _ in range(len(old_dims_mapping) - 1)
                        ]
                        op_dist_attr.set_output_dims_mapping(
                            arg_name, new_dims_mapping
                        )
1064 1065 1066 1067 1068 1069 1070
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
                    serial_tensor
                )
                dist_tensor.dist_attr.dims_mapping = (
                    op_dist_attr.get_output_dims_mapping(arg_name)
                )

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    def _complete_tensor_dist_attr_by_op(self, serial_main_program=None):
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

        self._dist_context.initialize()

        self._prepare()

        has_set_dist_attr = set()

        all_nodes = self._dist_context.serial_ordered_nodes
        for node in all_nodes:
            if node.is_op():
                if node.op().type() in ["while"]:
                    continue
                dist_op = self._dist_context.get_dist_op_for_graph(node)
                op_dist_attr = dist_op.dist_attr
                for tensor_node in node.inputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        # Skip the non-leaf var node
                        if len(tensor_node.inputs) != 0:
                            continue
                        tensor_desc = tensor_node.var()
                        tensor_name = tensor_desc.name()
                        tensor = dist_op.get_serial_input(tensor_name)
                        # Use the first op to set the tensor dist attr
                        if tensor_name in has_set_dist_attr:
                            continue
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
                        tensor_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_graph(
                                tensor_node
                            )
                        )
                        tensor_dist_attr.process_mesh = (
                            op_dist_attr.process_mesh
                        )
                        tensor_dist_attr.dims_mapping = (
                            op_dist_attr.get_input_dims_mapping(tensor_name)
                            if tensor.is_parameter
                            else [-1 for i in tensor_desc.shape()]
                        )
1114 1115 1116 1117 1118 1119
                        has_set_dist_attr.add(tensor_name)
                for tensor_node in node.outputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        tensor_name = tensor_node.var().name()
                        if tensor_name in has_set_dist_attr:
                            continue
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
                        tensor_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_graph(
                                tensor_node
                            )
                        )
                        tensor_dist_attr.process_mesh = (
                            op_dist_attr.process_mesh
                        )
                        tensor_dist_attr.dims_mapping = (
                            op_dist_attr.get_output_dims_mapping(tensor_name)
                        )
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
                        has_set_dist_attr.add(tensor_name)

        self._update_process_mesh_for_specials()

        self._update_process_mesh_between_graphs()

        self._update_dims_mapping_for_special()

        self._update_dims_mapping_between_graphs()

        # Copy the corresponding distributed attribute from graph to serial_main_program
        self._dist_context.copy_dist_attr_from_graph_to_program()

        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

1149
    def _complete_high_order_grad_annotation(self, serial_main_program=None):
1150
        """
1151
        NOTE:
1152 1153 1154 1155
            [HighOrderGrad] Complete the annotation of vars and ops only for high order gradient.
            This function is temporary to support high order gradient, and will be removed in the future.
        """

1156 1157 1158 1159 1160
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

1161 1162 1163 1164 1165 1166 1167
        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_op_by_id(ops, id):
            for op in ops:
1168
                if op.desc.original_id() == id:
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
                    return op
            return None

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
        grad_var_to_var = dist_op_context.grad_var_to_var

        appended_grad_times = 0
        for idx in range(0, len(ops)):
            op = ops[idx]
            if int(op.attr('op_role')) == int(
1181 1182
                core.op_proto_and_checker_maker.OpRole.Forward
            ):
1183 1184 1185
                continue

            if int(op.attr('op_role')) == int(
1186 1187 1188 1189
                core.op_proto_and_checker_maker.OpRole.Backward
            ) and int(ops[idx - 1].attr('op_role')) == int(
                core.op_proto_and_checker_maker.OpRole.Forward
            ):
1190 1191
                appended_grad_times += 1

1192
            if int(op.attr('op_role')) == int(
1193 1194 1195
                int(core.op_proto_and_checker_maker.OpRole.Backward)
                | int(core.op_proto_and_checker_maker.OpRole.Loss)
            ):
1196 1197 1198
                assert op.type == "fill_constant"
                break

1199 1200 1201
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1202 1203 1204 1205
            if (
                grad_op.desc.original_id()
                in dist_op_context.grad_op_id_to_op_id
            ):
1206
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1207
                forward_op = _get_op_by_id(
1208 1209 1210 1211 1212
                    ops,
                    dist_op_context.grad_op_id_to_op_id[
                        grad_op.desc.original_id()
                    ],
                )
1213 1214
                assert forward_op is not None

1215 1216 1217
                fwd_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(forward_op)
                )
1218 1219 1220 1221 1222
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
                grad_op_dist_attr = OperatorDistributedAttribute()
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh

                for input_name in grad_op.input_arg_names:
1223 1224 1225 1226
                    if (
                        input_name not in forward_op.input_arg_names
                        and input_name not in forward_op.output_arg_names
                    ):
1227 1228
                        if input_name in grad_var_to_var[appended_grad_times]:
                            fwd_name = grad_var_to_var[appended_grad_times][
1229 1230 1231 1232 1233 1234 1235
                                input_name
                            ]
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    fwd_name
                                )
                            )
1236 1237 1238
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
1239 1240
                                input_var
                            ).dims_mapping
1241 1242
                    else:
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
1243 1244 1245 1246 1247
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_input_dims_mapping(
                                    input_name
                                )
                            )
1248
                        else:
1249 1250 1251 1252 1253 1254 1255 1256
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    input_name
                                )
                            )
                    assert (
                        ref_dims_mapping is not None
                    ), "[{}] 's dims mapping is NONE".format(input_name)
1257
                    grad_op_dist_attr.set_input_dims_mapping(
1258 1259
                        input_name, ref_dims_mapping
                    )
1260 1261 1262 1263 1264

                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var[appended_grad_times]
                    fwd_name = grad_var_to_var[appended_grad_times][output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1265 1266
                        fwd_name
                    )
1267 1268 1269 1270 1271 1272
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
1273 1274
                        output_var, tensor_dist_attr
                    )
1275
                    # op
1276
                    grad_op_dist_attr.set_output_dims_mapping(
1277 1278
                        output_name, ref_dims_mapping
                    )
1279 1280

                self._dist_context.set_op_dist_attr_for_program(
1281 1282
                    grad_op, grad_op_dist_attr
                )
1283 1284 1285 1286 1287 1288 1289

            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
            else:

                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
1290 1291 1292 1293 1294
                    assert (
                        output_name in grad_var_to_var[appended_grad_times]
                    ), "sum op's output '{}' has no corresponding var".format(
                        output_name
                    )
1295
                    ref_fwd_var_name = grad_var_to_var[appended_grad_times][
1296 1297
                        output_name
                    ]
1298
                    ref_fwd_var = vars[ref_fwd_var_name]
1299 1300 1301 1302 1303
                    ref_fwd_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_fwd_var
                        )
                    )
1304 1305 1306 1307 1308 1309 1310 1311
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1312 1313
                        output_var, tensor_dist_attr
                    )
1314 1315 1316 1317 1318
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1319 1320
                            var_name, ref_fwd_dims_mapping
                        )
1321
                    grad_op_dist_attr.set_output_dims_mapping(
1322 1323
                        output_name, ref_fwd_dims_mapping
                    )
1324

1325
                elif grad_op.type == 'fill_any_like':
1326 1327
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
1328 1329 1330 1331 1332
                    ref_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_var
                        )
                    )
1333 1334 1335 1336 1337 1338 1339 1340 1341
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1342 1343
                        output_var, tensor_dist_attr
                    )
1344 1345 1346
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1347
                    grad_op_dist_attr.set_input_dims_mapping(
1348 1349
                        ref_var_name, ref_dims_mapping
                    )
1350
                    grad_op_dist_attr.set_output_dims_mapping(
1351 1352
                        output_var_name, ref_dims_mapping
                    )
1353 1354 1355 1356 1357

                elif grad_op.type in ['shape', 'fill_constant']:
                    continue

                else:
1358 1359 1360
                    raise ValueError(
                        "got unexpect op [{}]".format(str(grad_op.type))
                    )
1361 1362

                self._dist_context.set_op_dist_attr_for_program(
1363 1364
                    grad_op, grad_op_dist_attr
                )
1365

1366
    def complete_backward_annotation(self, serial_main_program=None):
1367
        """Complete the annotation of vars and ops in the backward phase for parallel program."""
1368

1369 1370 1371
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
1372
            self._dist_context._serial_main_program = serial_main_program
1373 1374 1375 1376 1377 1378 1379 1380

        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_forward_varname_from_grad_varname(grad_var_name):
            assert _is_grad_var_name(
1381 1382 1383
                grad_var_name
            ), "[{}] is not a grad varnme.".format(grad_var_name)
            return grad_var_name[: grad_var_name.find("@GRAD")]
1384 1385 1386

        def _get_op_by_id(ops, id):
            for op in ops:
1387
                if op.desc.original_id() == id:
1388 1389 1390 1391 1392 1393
                    return op
            return None

        first_backward_op_idx = -1
        for idx, op in enumerate(serial_main_program.global_block().ops):
            if int(op.attr('op_role')) == int(
1394 1395 1396
                int(core.op_proto_and_checker_maker.OpRole.Backward)
                | int(core.op_proto_and_checker_maker.OpRole.Loss)
            ):
1397 1398 1399 1400
                assert op.type == "fill_constant"
                first_backward_op_idx = idx
                break

1401 1402 1403
        assert (
            first_backward_op_idx >= 0
        ), "No backward procedure found in this program."
1404 1405 1406 1407

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
1408 1409 1410
        grad_var_to_var = dist_op_context.grad_var_to_var[
            len(dist_op_context.grad_var_to_var)
        ]
1411 1412 1413 1414 1415 1416

        for idx in range(first_backward_op_idx, len(ops)):

            # complete the initial grad loss op
            if idx == first_backward_op_idx:
                assert ops[idx].type == "fill_constant"
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
                assert (
                    len(ops[idx].input_arg_names) == 0
                ), "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].input_arg_names)
                )
                assert (
                    len(ops[idx].output_arg_names) == 1
                ), "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].output_arg_names)
                )
1427 1428 1429

                grad_var = vars[ops[idx].output_arg_names[0]]
                forward_var_name = _get_forward_varname_from_grad_varname(
1430 1431
                    grad_var.name
                )
1432 1433 1434 1435
                forward_var = vars[forward_var_name]

                # TODO complete other attribte for grad var
                tensor_dist_attr = TensorDistributedAttribute()
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
                process_mesh = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        forward_var
                    ).process_mesh
                )
                dims_mapping = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        forward_var
                    ).dims_mapping
                )
1446 1447 1448
                tensor_dist_attr.dims_mapping = dims_mapping
                tensor_dist_attr.process_mesh = process_mesh
                self._dist_context.set_tensor_dist_attr_for_program(
1449 1450
                    grad_var, tensor_dist_attr
                )
1451

1452 1453
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = process_mesh
1454 1455 1456
                op_dist_attr.set_output_dims_mapping(
                    grad_var.name, dims_mapping
                )
1457
                self._dist_context.set_op_dist_attr_for_program(
1458 1459
                    ops[idx], op_dist_attr
                )
1460
                continue
1461

1462 1463 1464
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1465 1466 1467 1468
            if (
                grad_op.desc.original_id()
                in dist_op_context.grad_op_id_to_op_id
            ):
1469
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1470 1471 1472
                forward_op = _get_op_by_id(
                    ops[:first_backward_op_idx],
                    dist_op_context.grad_op_id_to_op_id[
1473 1474 1475
                        grad_op.desc.original_id()
                    ],
                )
1476 1477
                assert forward_op is not None

J
JZ-LIANG 已提交
1478
                if grad_op.type == "concat" and forward_op.type == "split":
1479 1480 1481 1482 1483
                    forward_op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_program(
                            forward_op
                        )
                    )
J
JZ-LIANG 已提交
1484 1485
                    output_var = vars[grad_op.desc.output('Out')[0]]
                    split_input_var_name = forward_op.input("X")[0]
1486 1487 1488 1489 1490
                    ref_dims_mapping = (
                        forward_op_dist_attr.get_input_dims_mapping(
                            split_input_var_name
                        )
                    )
J
JZ-LIANG 已提交
1491 1492 1493 1494 1495
                    ref_mesh = forward_op_dist_attr.process_mesh

                    grad_op_dist_attr = OperatorDistributedAttribute()
                    for input_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1496 1497
                            input_name, ref_dims_mapping
                        )
J
JZ-LIANG 已提交
1498 1499 1500 1501

                    output_var_dist_attr = TensorDistributedAttribute()
                    output_var_dist_attr.dims_mapping = ref_dims_mapping
                    output_var_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1502
                    self._dist_context.set_tensor_dist_attr_for_program(
1503 1504
                        output_var, output_var_dist_attr
                    )
J
JZ-LIANG 已提交
1505

1506
                    grad_op_dist_attr.set_output_dims_mapping(
1507 1508
                        output_var.name, ref_dims_mapping
                    )
J
JZ-LIANG 已提交
1509
                    grad_op_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1510
                    self._dist_context.set_op_dist_attr_for_program(
1511 1512
                        grad_op, grad_op_dist_attr
                    )
1513 1514 1515 1516 1517 1518
                    grad_op_dist_attr.impl_type = (
                        fwd_op_dist_attr.impl_type  # noqa: F821
                    )
                    grad_op_dist_attr.impl_idx = (
                        fwd_op_dist_attr.impl_idx  # noqa: F821
                    )
1519

J
JZ-LIANG 已提交
1520 1521
                    continue

1522 1523 1524
                fwd_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(forward_op)
                )
1525
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
1526
                grad_op_dist_attr = OperatorDistributedAttribute()
1527
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh
1528 1529

                for input_name in grad_op.input_arg_names:
1530 1531 1532 1533
                    if (
                        input_name not in forward_op.input_arg_names
                        and input_name not in forward_op.output_arg_names
                    ):
1534 1535
                        if input_name in grad_var_to_var:
                            fwd_name = grad_var_to_var[input_name]
1536 1537 1538 1539 1540
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    fwd_name
                                )
                            )
1541 1542 1543
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
1544 1545
                                input_var
                            ).dims_mapping
1546
                    else:
1547
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
1548 1549 1550 1551 1552
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_input_dims_mapping(
                                    input_name
                                )
                            )
1553
                        else:
1554 1555 1556 1557 1558 1559 1560 1561
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    input_name
                                )
                            )
                    assert (
                        ref_dims_mapping is not None
                    ), "[{}] 's dims mapping is NONE".format(input_name)
1562
                    grad_op_dist_attr.set_input_dims_mapping(
1563 1564
                        input_name, ref_dims_mapping
                    )
1565

1566 1567 1568 1569
                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var
                    fwd_name = grad_var_to_var[output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1570 1571
                        fwd_name
                    )
1572 1573 1574 1575 1576 1577
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
1578 1579
                        output_var, tensor_dist_attr
                    )
1580
                    # op
1581
                    grad_op_dist_attr.set_output_dims_mapping(
1582 1583
                        output_name, ref_dims_mapping
                    )
1584

1585 1586
                grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx
1587
                self._dist_context.set_op_dist_attr_for_program(
1588 1589
                    grad_op, grad_op_dist_attr
                )
1590

1591
            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
1592
            else:
1593 1594 1595
                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
1596 1597 1598 1599 1600
                    assert (
                        output_name in grad_var_to_var
                    ), "sum op's output '{}' has no corresponding var".format(
                        output_name
                    )
1601 1602
                    ref_fwd_var_name = grad_var_to_var[output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
1603 1604 1605 1606 1607
                    ref_fwd_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_fwd_var
                        )
                    )
1608 1609 1610 1611 1612 1613 1614 1615 1616
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh

                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1617 1618
                        output_var, tensor_dist_attr
                    )
1619

1620 1621 1622 1623 1624
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1625 1626
                            var_name, ref_fwd_dims_mapping
                        )
1627
                    grad_op_dist_attr.set_output_dims_mapping(
1628 1629
                        output_name, ref_fwd_dims_mapping
                    )
1630 1631
                    grad_op_dist_attr.impl_type = "default"
                    grad_op_dist_attr.impl_idx = 0
1632

1633
                elif grad_op.type == 'fill_any_like':
1634 1635
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
1636 1637 1638 1639 1640
                    ref_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_var
                        )
                    )
1641 1642 1643 1644 1645 1646 1647 1648 1649
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1650 1651
                        output_var, tensor_dist_attr
                    )
1652 1653 1654
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1655
                    grad_op_dist_attr.set_input_dims_mapping(
1656 1657
                        ref_var_name, ref_dims_mapping
                    )
1658
                    grad_op_dist_attr.set_output_dims_mapping(
1659 1660
                        output_var_name, ref_dims_mapping
                    )
1661 1662

                else:
1663 1664 1665
                    raise ValueError(
                        "got unexpect op [{}]".format(str(grad_op.type))
                    )
1666 1667

                self._dist_context.set_op_dist_attr_for_program(
1668 1669
                    grad_op, grad_op_dist_attr
                )
1670

1671
    def complete_update_annotation(self, serial_main_program):
1672
        """Complete the annotation of vars and ops in the update phase for parallel program."""
1673 1674
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
1675 1676 1677 1678
        from paddle.distributed.auto_parallel.process_group import (
            get_world_process_group,
        )

1679
        world_ranks = get_world_process_group().ranks
1680 1681

        # Notice: serial_main_program is actually a dist_main_program of current rank,
1682
        # and must be passed into this function.
1683 1684
        # TODO: We should fix this behavior.

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        learning_rate_completed = False

        for idx in range(len(ops)):

            # complete the annotation of the optimizer op.
            # TODO to add attribute for moment var
            op = ops[idx]
            if int(op.attr('op_role')) == int(OpRole.Optimize):
1695
                if is_gradient_clip_op(op):
1696
                    if op.type in [
1697 1698 1699 1700 1701
                        "sum",
                        "sqrt",
                        "fill_constant",
                        "elementwise_max",
                        "elementwise_div",
1702 1703 1704 1705 1706 1707
                    ]:
                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = world_ranks
                        for in_name in op.input_arg_names:
                            in_var = vars[in_name]
                            in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
1708 1709
                                in_var
                            )
1710
                            op_dist_attr.set_input_dist_attr(
1711 1712
                                in_name, in_dist_attr
                            )
1713 1714 1715 1716 1717 1718 1719 1720
                        for out_name in op.output_arg_names:
                            out_var = vars[out_name]
                            out_dist_attr = TensorDistributedAttribute()
                            out_dist_attr.process_mesh = world_ranks
                            out_dist_attr.dims_mapping = [
                                -1 for _ in range(len(out_var.shape))
                            ]
                            self._dist_context.set_tensor_dist_attr_for_program(
1721 1722
                                out_var, out_dist_attr
                            )
1723
                            op_dist_attr.set_output_dist_attr(
1724 1725
                                out_name, out_dist_attr
                            )
1726 1727
                    else:
                        in_var = vars[op.input("X")[0]]
1728 1729 1730 1731 1732
                        in_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_program(
                                in_var
                            )
                        )
1733 1734 1735 1736
                        assert in_dist_attr is not None
                        ref_process_mesh = in_dist_attr.process_mesh
                        ref_dims_mapping = in_dist_attr.dims_mapping

1737 1738 1739 1740
                        if (
                            op.type == "cast"
                            and ops[idx + 1].type == "elementwise_mul"
                        ):
1741 1742
                            ref_var = vars[ops[idx + 1].input("X")[0]]
                            ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
1743 1744
                                ref_var
                            )
1745 1746 1747 1748 1749 1750 1751 1752 1753
                            assert ref_dist_attr is not None
                            ref_process_mesh = ref_dist_attr.process_mesh

                        out_var = vars[op.output("Out")[0]]
                        out_dist_attr = TensorDistributedAttribute()
                        out_dist_attr.process_mesh = ref_process_mesh
                        if out_var.shape == in_var.shape:
                            out_dist_attr.dims_mapping = ref_dims_mapping
                        else:
1754 1755 1756 1757
                            assert (
                                len(out_var.shape) == 1
                                and out_var.shape[0] == 1
                            )
1758 1759
                            out_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
1760 1761
                            out_var, out_dist_attr
                        )
1762 1763 1764 1765

                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = ref_process_mesh
                        op_dist_attr.set_input_dist_attr(
1766 1767
                            in_var.name, in_dist_attr
                        )
1768
                        op_dist_attr.set_output_dist_attr(
1769 1770
                            out_var.name, out_dist_attr
                        )
Z
zhaoyingli 已提交
1771 1772

                    self._dist_context.set_op_dist_attr_for_program(
1773 1774
                        op, op_dist_attr
                    )
1775 1776

                if "Grad" in op.input_names and "Param" in ops[idx].input_names:
1777 1778 1779 1780 1781 1782
                    assert (
                        len(op.input("Param")) == 1
                    ), "Only support one-to-one now."
                    assert (
                        len(op.input("Grad")) == 1
                    ), "Only support one-to-one now."
1783 1784 1785
                    param = vars[op.input("Param")[0]]
                    grad_var = vars[op.input("Grad")[0]]

1786 1787 1788 1789 1790
                    param_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        )
                    )
1791
                    assert param_dist_attr is not None
1792 1793 1794 1795 1796
                    ref_process_mesh = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        ).process_mesh
                    )
1797
                    assert ref_process_mesh is not None
1798 1799 1800 1801 1802
                    ref_dims_mapping = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        ).dims_mapping
                    )
1803 1804 1805
                    assert ref_dims_mapping is not None
                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
1806 1807 1808 1809 1810 1811
                    op_dist_attr.set_input_dims_mapping(
                        grad_var.name, ref_dims_mapping
                    )
                    op_dist_attr.set_input_dims_mapping(
                        param.name, ref_dims_mapping
                    )
1812
                    op_dist_attr.set_output_dims_mapping(
1813 1814
                        param.name, ref_dims_mapping
                    )
1815 1816
                    learning_var = vars[op.input("LearningRate")[0]]
                    op_dist_attr.set_input_dims_mapping(learning_var.name, [-1])
1817
                    op_dist_attr.set_output_dims_mapping(
1818 1819
                        learning_var.name, [-1]
                    )
1820 1821 1822 1823

                    if not learning_rate_completed:
                        learning_rate_completed = True
                        var_dist_attr = TensorDistributedAttribute()
1824
                        var_dist_attr.process_mesh = world_ranks
1825 1826
                        var_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
1827 1828
                            learning_var, var_dist_attr
                        )
1829 1830 1831 1832

                    for input_name in op.desc.input_names():

                        if input_name in [
1833 1834 1835 1836 1837 1838 1839
                            'Param',
                            'Grad',
                            'LearningRate',
                            "SkipUpdate",
                            "Beta1Tensor",
                            "Beta2Tensor",
                            "EpsilonTensor",
1840 1841
                        ]:
                            continue
1842 1843
                        if len(op.desc.input(input_name)) == 0:
                            continue
1844 1845 1846 1847 1848 1849 1850

                        assert len(op.desc.input(input_name)) == 1
                        input_var = vars[op.desc.input(input_name)[0]]
                        input_var_attr = TensorDistributedAttribute()

                        if "Beta1Pow" in input_name or "Beta2Pow" in input_name:
                            input_var_attr.dims_mapping = [-1]
1851
                            op_dist_attr.set_input_dims_mapping(
1852 1853
                                input_var.name, [-1]
                            )
1854
                            op_dist_attr.set_output_dims_mapping(
1855 1856
                                input_var.name, [-1]
                            )
1857 1858 1859
                        else:
                            input_var_attr.dims_mapping = ref_dims_mapping
                            op_dist_attr.set_input_dims_mapping(
1860 1861
                                input_var.name, ref_dims_mapping
                            )
1862
                            op_dist_attr.set_output_dims_mapping(
1863 1864
                                input_var.name, ref_dims_mapping
                            )
1865 1866 1867

                        input_var_attr.process_mesh = ref_process_mesh
                        self._dist_context.set_tensor_dist_attr_for_program(
1868 1869
                            input_var, input_var_attr
                        )
1870 1871

                    self._dist_context.set_op_dist_attr_for_program(
1872 1873
                        op, op_dist_attr
                    )
1874
                    continue
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

    def complete_prim_annotation(self, serial_main_program=None):
        """
        fill default data parallel annotation for program with primitive operators.

        Arguments:
            serial_main_program: partial annotated serial_main_program.
        Returns:
            serial_main_program: completed annotated serial_main_program.
        """
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
Z
zhaoyingli 已提交
1888
            self._dist_context._serial_main_program = serial_main_program
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

        self._dist_context._is_initialized = True
        self._dist_context._init_dist_attr_for_program()
        self._init_global_mesh_for_program()
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()

    def _init_global_mesh_for_program(self):
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
1900 1901 1902 1903
        from paddle.distributed.auto_parallel.process_group import (
            get_world_process_group,
        )

1904 1905 1906 1907 1908 1909
        world_ranks = get_world_process_group().ranks

        for block in self._dist_context._serial_main_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
1910 1911
                    tensor
                )
1912 1913 1914 1915 1916 1917 1918 1919 1920
                assert dist_tensor is not None
                dist_tensor.dist_attr.process_mesh = world_ranks
            for op in block.ops:
                # Copy the distributed operators in the default context
                dist_op = self._dist_context.get_dist_op_for_program(op)
                assert dist_op is not None
                dist_op.dist_attr.process_mesh = world_ranks

                # Find the most compatible implemenetations from the distributed operator
1921
                op_dist_impls = find_compatible_distributed_operator_impls(
1922 1923
                    dist_op, fwd=True
                )
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
                if op_dist_impls is not None:
                    backup_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
                    for op_dist_impl in op_dist_impls:
                        dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                        if op_dist_impl.is_auto_compatible(dist_op):
                            if op_dist_impl.type == "elementwise":
                                dist_op.dist_attr.impl_type = "default"
                            else:
                                dist_op.dist_attr.impl_type = op_dist_impl.type
                            # op_dist_attr.impl_type = op_dist_impl.type
                            dist_op.dist_attr.impl_idx = op_dist_impl.idx
                            break
                        else:
                            dist_op.dist_attr = backup_op_dist_attr