binary.cc 109.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/binary.h"
F
From00 已提交
16 17 18

#include <algorithm>
#include <vector>
19

20
#include "glog/logging.h"
F
From00 已提交
21
#include "paddle/phi/common/data_type.h"
F
From00 已提交
22
#include "paddle/phi/common/layout.h"
23
#include "paddle/phi/common/type_traits.h"
24
#include "paddle/phi/core/ddim.h"
25
#include "paddle/phi/core/infermeta_utils.h"
26
#include "paddle/phi/infermeta/unary.h"
F
From00 已提交
27
#include "paddle/phi/kernels/cpu/conv_util.h"
28
#include "paddle/phi/kernels/funcs/axis_utils.h"
29
#include "paddle/phi/kernels/funcs/common_shape.h"
C
Chen Weihang 已提交
30

31
namespace phi {
C
Chen Weihang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
namespace detail {

static void BinarySameInputDimsCheck(const MetaTensor& x,
                                     const MetaTensor& y,
                                     MetaConfig config) {
  auto input_dim = x.dims();
  auto other_dim = y.dims();
  PADDLE_ENFORCE_EQ(input_dim.size(),
                    other_dim.size(),
                    phi::errors::PreconditionNotMet(
                        "Input(Input) and Input(Other) must have the same "
                        "dimension size."));
  int n = input_dim.size();
  bool is_runtime = config.is_runtime;
  for (int i = 0; i < n; i++) {
    if (is_runtime) {
      PADDLE_ENFORCE_EQ(input_dim[i],
                        other_dim[i],
                        phi::errors::PreconditionNotMet(
                            "The value at dim %d of Input(Input) is not "
                            "equal to the Input(Other): %ld != %ld.",
                            i,
                            input_dim[i],
                            other_dim[i]));
    } else {
      if (!(input_dim[i] < 0 || other_dim[i] < 0)) {
        PADDLE_ENFORCE_EQ(input_dim[i],
                          other_dim[i],
                          phi::errors::PreconditionNotMet(
                              "The value at dim %d of Input(Input) is not "
                              "equal to the Input(Other): %ld != %ld.",
                              i,
                              input_dim[i],
                              other_dim[i]));
      }
    }
  }
}

71 72 73 74
// Used in MatrixRankTolInferMeta
static DDim CheckAndGetOutputDim(const DDim& dim_x) {
  auto x_vec = phi::vectorize(dim_x);
  if (x_vec.size() == 2) {
75
    return phi::make_ddim({});
76 77 78 79 80
  }
  x_vec.erase(x_vec.end() - 2, x_vec.end());
  return phi::make_ddim(x_vec);
}

C
Chen Weihang 已提交
81 82 83 84 85 86 87
}  // namespace detail

void AllValueCompareInferMeta(const MetaTensor& x,
                              const MetaTensor& y,
                              MetaTensor* out,
                              MetaConfig config) {
  detail::BinarySameInputDimsCheck(x, y, config);
88
  out->set_dims(phi::make_ddim({}));
C
Chen Weihang 已提交
89 90
  out->set_dtype(DataType::BOOL);
}
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
void KLDivInferMeta(const MetaTensor& x,
                    const MetaTensor& label,
                    const std::string& reduction,
                    MetaTensor* out,
                    MetaConfig config) {
  auto dim_x = x.dims();
  auto dim_target = label.dims();
  PADDLE_ENFORCE_EQ(dim_x.size(),
                    dim_target.size(),
                    phi::errors::InvalidArgument(
                        "Input(X) rank and Input(Target) rank should be "
                        "same, but received X rank(%d) != Target rank(%d)",
                        dim_x.size(),
                        dim_target.size()));
  for (int i = 0; i < dim_x.size(); i++) {
    if (config.is_runtime || (dim_x[i] > 0 && dim_target[i] > 0)) {
      PADDLE_ENFORCE_EQ(
          dim_x[i],
          dim_target[i],
          phi::errors::InvalidArgument(
              "Input(X) and Input(Target) should in same shape. but received "
              "X dimension[%d](%d) != Target dimension[%d](%d)",
              i,
              dim_x[i],
              i,
              dim_target[i]));
    }
  }

  auto reduction_valid = "mean" == reduction || "sum" == reduction ||
                         "batchmean" == reduction || "none" == reduction;
  PADDLE_ENFORCE_EQ(
      reduction_valid,
      true,
      phi::errors::InvalidArgument(
          "Attr(reduction) can only be 'none'|'batchmean'|'sum'|'mean'."));

  if ("none" == reduction) {
    out->set_dims(dim_x);
  } else {
    out->set_dims({1});
  }
  out->set_dtype(x.dtype());
}

137
void Atan2InferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      y_dims.size(),
      phi::errors::InvalidArgument("The rank (%d) of X shall be same as "
                                   "rank (%d) of Y.",
                                   x_dims.size(),
                                   y_dims.size()));

  if (x_dims.size() > 0)
    PADDLE_ENFORCE_LE(x_dims[0],
                      y_dims[0],
                      phi::errors::InvalidArgument(
                          "The count (%d) of elements of X shall not "
                          "greater than count (%d) of elements of Y.",
                          x_dims[0],
                          y_dims[0]));

158
  out->share_meta(x);
159 160 161
  if (x.dtype() == DataType::INT32 || x.dtype() == DataType::INT64 ||
      y.dtype() == DataType::INT32 || y.dtype() == DataType::INT64) {
    out->set_dtype(DataType::FLOAT64);
162 163
  } else {
    out->set_dtype(x.dtype());
164
  }
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
}

void BCELossInferMeta(const MetaTensor& input,
                      const MetaTensor& label,
                      MetaTensor* out,
                      MetaConfig config) {
  auto input_dims = input.dims();
  auto label_dims = label.dims();

  int rank = input_dims.size();
  PADDLE_ENFORCE_EQ(rank,
                    label_dims.size(),
                    phi::errors::InvalidArgument(
                        "Input(X) and Input(Label) shall have the same rank."
                        "But received: the rank of Input(X) is [%d], "
                        "the rank of Input(Label) is [%d].",
                        rank,
                        label_dims.size()));

  bool check = true;
  if ((!config.is_runtime) &&
      (phi::product(input_dims) <= 0 || phi::product(label_dims) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(input_dims,
                      label_dims,
                      phi::errors::InvalidArgument(
                          "Input(X) and Input(Label) shall have the same "
                          "shape. But received: the shape of Input(X) is "
                          "[%s], the shape of Input(Label) is [%s].",
                          input_dims,
                          label_dims));
  }

  out->set_dims(input_dims);
  out->set_dtype(input.dtype());
  out->share_lod(input);
}

void BincountInferMeta(const MetaTensor& x,
207
                       const MetaTensor& weights,
208
                       const Scalar& minlength,
209 210 211 212 213 214 215 216 217 218
                       MetaTensor* out) {
  auto input_dim = x.dims();

  PADDLE_ENFORCE_EQ(
      input_dim.size(),
      1,
      phi::errors::InvalidArgument("The 'shape' of Input(X) must be 1-D tensor."
                                   "But the dimension of Input(X) is [%d]",
                                   input_dim.size()));

L
Leo Chen 已提交
219
  VLOG(4) << "####### CHECK weights";
220 221
  if (weights) {
    auto weights_dim = weights.dims();
L
Leo Chen 已提交
222
    VLOG(4) << "##### weights_dim " << weights_dim;
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    PADDLE_ENFORCE_EQ(weights_dim.size(),
                      1,
                      phi::errors::InvalidArgument(
                          "The 'shape' of Input(Weights) must be 1-D tensor."
                          "But the dimension of Input(Weights) is [%d]",
                          weights_dim.size()));

    PADDLE_ENFORCE_EQ(
        weights_dim[0],
        input_dim[0],
        phi::errors::InvalidArgument(
            "The 'shape' of Input(Weights) must be equal to the 'shape' of "
            "Input(X)."
            "But received: the 'shape' of Input(Weights) is [%s],"
            "the 'shape' of Input(X) is [%s]",
            weights_dim,
            input_dim));
  }
  out->set_dims(phi::make_ddim({-1}));
242 243
  if (weights) {
    out->set_dtype(weights.dtype());
244 245 246 247 248 249 250
  } else {
    out->set_dtype(x.dtype());
  }

  out->share_lod(x);
}

B
BiynXu 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
void BmmInferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
  std::vector<int64_t> x_dims = phi::vectorize(x.dims());
  std::vector<int64_t> y_dims = phi::vectorize(y.dims());
  std::size_t x_ndims = x_dims.size();
  std::size_t y_ndims = y_dims.size();

  PADDLE_ENFORCE_EQ(x_ndims,
                    3,
                    phi::errors::InvalidArgument(
                        "Input(X) of BmmOp must be 3-dimensional in BmmOp, "
                        "but received X's shape: [%s].",
                        x_ndims));
  PADDLE_ENFORCE_EQ(y_ndims,
                    3,
                    phi::errors::InvalidArgument(
                        "Input(Y) of BmmOp must be 3-dimensional in BmmOp, "
                        "but received Y's shape: [%s].",
                        y_ndims));
  PADDLE_ENFORCE_EQ(
      x_dims[0],
      y_dims[0],
      phi::errors::InvalidArgument(
          "Input(X) and Input(Y) must have the same batch size in BmmOp, "
          "but received X's batch size: [%s],"
          "Y's batch size [%s]",
          x_dims[0],
          y_dims[0]));
  PADDLE_ENFORCE_EQ(
      x_dims[2],
      y_dims[1],
      phi::errors::InvalidArgument(
          "Input(X)'s width must be equal with Input(Y)'s height in BmmOp,"
          "but receive X's width: [%s],"
          "Y's height: [%s].",
          x_dims[2],
          y_dims[1]));

  std::vector<int64_t> dim_out;
  dim_out.push_back(x_dims[0]);
  dim_out.push_back(x_dims[1]);
  dim_out.push_back(y_dims[2]);
  out->set_dims(phi::make_ddim(dim_out));
  out->share_lod(x);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
void CholeskySolveInferMeta(const MetaTensor& x,
                            const MetaTensor& y,
                            bool upper,
                            MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  auto x_dims_n = x_dims.size();
  auto y_dims_n = y_dims.size();

  PADDLE_ENFORCE_GE(x_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "the rank of input Y must greater or equal to 2"));
  PADDLE_ENFORCE_GE(y_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "the rank of input X must greater or equal to 2"));
  PADDLE_ENFORCE_EQ(
      y_dims[y_dims_n - 1],
      y_dims[y_dims_n - 2],
      phi::errors::InvalidArgument("input Matrix Y should be square matrix,"
                                   "But Got last shape of %ld x %ld",
                                   y_dims[y_dims_n - 1],
                                   y_dims[y_dims_n - 2]));
  PADDLE_ENFORCE_EQ(
      x_dims[x_dims_n - 2],
      y_dims[y_dims_n - 2],
      phi::errors::InvalidArgument("the first dim of Matrix X must be equal to "
                                   "the fisrt dim of Matrix Y,"
                                   "But Got %ld and %ld",
                                   x_dims[x_dims_n - 2],
                                   y_dims[y_dims_n - 2]));

  std::vector<int64_t> x_dims_vec = phi::vectorize(x_dims);
  std::vector<int64_t> y_dims_vec = phi::vectorize(y_dims);

  std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(), x_dims_vec.end() - 2);
  std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(), y_dims_vec.end() - 2);

  std::vector<int64_t> expand_batch_portion =
      funcs::MatrixGetBroadcastBatchPortion(x_dims_vec_cut, y_dims_vec_cut);

  std::vector<int64_t> x_broadcast_dims({expand_batch_portion});
  x_broadcast_dims.insert(x_broadcast_dims.end(),
                          {x_dims_vec[x_dims_n - 2], x_dims_vec[x_dims_n - 1]});

  // dim of 'out' is the same with 'X' after broadcast
  out->set_dims(phi::make_ddim(x_broadcast_dims));
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

352 353 354 355
void CompareRawInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         int axis,
                         MetaTensor* out) {
F
From00 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  auto dim_x = x.dims();
  auto dim_y = y.dims();

  if (dim_x == dim_y) {
    out->share_meta(x);
  } else {
    int max_dim = std::max(dim_x.size(), dim_y.size());
    int axis = std::abs(dim_x.size() - dim_y.size());
    std::vector<int> x_dims_array(max_dim);
    std::vector<int> y_dims_array(max_dim);
    std::vector<int> out_dims_array(max_dim);
    funcs::GetBroadcastDimsArrays(dim_x,
                                  dim_y,
                                  x_dims_array.data(),
                                  y_dims_array.data(),
                                  out_dims_array.data(),
                                  max_dim,
                                  axis);

    out->set_dims(make_ddim(out_dims_array));
    out->share_lod(x);
  }

  out->set_dtype(DataType::BOOL);
}

382 383 384 385 386 387
void CompareInferMeta(const MetaTensor& x,
                      const MetaTensor& y,
                      MetaTensor* out) {
  CompareRawInferMeta(x, y, -1, out);
}

F
From00 已提交
388 389 390 391 392 393 394 395 396 397 398
void CompareAllInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         MetaTensor* out) {
  auto dim_x = x.dims();
  auto dim_y = y.dims();
  PADDLE_ENFORCE_GE(
      dim_x.size(),
      dim_y.size(),
      errors::InvalidArgument(
          "The size of dim_y should not be greater than dim_x's."));
  out->share_lod(x);
399
  out->set_dims(make_ddim({}));
F
From00 已提交
400 401
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
void ComplexInferMeta(const MetaTensor& x,
                      const MetaTensor& y,
                      MetaTensor* out) {
  if (x.dims() == y.dims()) {
    auto sizes = vectorize(x.dims());
    out->set_dims(phi::make_ddim(sizes));
    out->set_dtype(dtype::ToComplex(x.dtype()));
    // NOTE(chenfeiyu): lod & broadcasting is intrinsically contradictory
    // so tensors with lod are not supported here
  } else {
    auto x_dims = x.dims();
    auto y_dims = y.dims();
    int max_dim = std::max(x_dims.size(), y_dims.size());

    // start align axis
    int axis = std::abs(x_dims.size() - y_dims.size());
    std::vector<int> x_dims_array(max_dim);
    std::vector<int> y_dims_array(max_dim);
    std::vector<int> out_dims_array(max_dim);
    phi::funcs::GetBroadcastDimsArrays(x_dims,
                                       y_dims,
                                       x_dims_array.data(),
                                       y_dims_array.data(),
                                       out_dims_array.data(),
                                       max_dim,
                                       axis);
    out->set_dims(phi::make_ddim(out_dims_array));
    out->set_dtype(dtype::ToComplex(x.dtype()));
  }
}

H
hong 已提交
433 434 435 436 437 438
void ConvInferMeta(const MetaTensor& input,
                   const MetaTensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings_t,
                   const std::string& padding_algorithm,
                   const std::vector<int>& dilations_t,
439
                   int groups,
H
hong 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
                   const std::string& data_format,
                   MetaTensor* out,
                   MetaConfig config) {
  std::vector<int> paddings = paddings_t;
  std::vector<int> dilations = dilations_t;
  auto in_dims = input.dims();
  auto filter_dims = filter.dims();
  int dilation_size = dilations.size();
  for (int i = 0; i < dilation_size; ++i) {
    PADDLE_ENFORCE_GT(
        dilations[i],
        0,
        phi::errors::InvalidArgument(
            "The dilation of Op(Conv) should be larget than 0, but received "
            "dilation is %d.",
            dilations[i]));
  }
  const bool channel_last = (config.is_run_mkldnn_kernel == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");

460 461 462 463 464 465 466
  for (int i = 0; i < 2; ++i) {
    PADDLE_ENFORCE_NE(in_dims[i],
                      0,
                      phi::errors::InvalidArgument(
                          "The size of Op(Conv) inputs should not be 0."));
  }

H
hong 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5,
      true,
      phi::errors::InvalidArgument(
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
          in_dims.size(),
          in_dims));

  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      filter_dims.size(),
      phi::errors::InvalidArgument(
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
          in_dims,
          in_dims.size(),
          filter_dims,
          filter_dims.size()));

  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i],
        0,
        phi::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      strides.size() + 2U,
      phi::errors::InvalidArgument(
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(),
          in_dims,
          strides.size(),
          phi::make_ddim(strides),
          in_sub_stride_size));

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];

  PADDLE_ENFORCE_EQ(
      input_channels,
      filter_dims[1] * groups,
      phi::errors::InvalidArgument(
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
          input_channels,
          in_dims,
          filter_dims[1],
          filter_dims,
          groups,
          data_format));
  PADDLE_ENFORCE_EQ(
      filter_dims[0] % groups,
      0,
      phi::errors::InvalidArgument(
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
          filter_dims[0],
          filter_dims,
          groups));

  if (config.is_runtime) {
    PADDLE_ENFORCE_GT(
        filter_dims[0],
        0,
        phi::errors::InvalidArgument(
            "the size of filter at axis 0 should be greater than 0"));
  }

  DDim in_data_dims;
  if (channel_last) {
    in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
  }

  DDim filter_data_dims = phi::slice_ddim(filter_dims, 2, filter_dims.size());

  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
  phi::UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
  for (int i = 0; i < in_data_dims.size(); ++i) {
    if ((!config.is_runtime) &&
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
      output_shape.push_back(-1);
    } else {
      const int dkernel = dilations[i] * (filter_data_dims[i] - 1) + 1;
      int output_size =
          (in_data_dims[i] + paddings[2 * i] + paddings[2 * i + 1] - dkernel) /
              strides[i] +
          1;
      output_shape.push_back(output_size);
    }
  }
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

  out->set_dims(make_ddim(output_shape));
  out->set_dtype(input.dtype());
}

592 593 594 595 596 597 598 599 600 601
void Conv3DInferMeta(const MetaTensor& input,
                     const MetaTensor& filter,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::string& padding_algorithm,
                     int groups,
                     const std::vector<int>& dilations,
                     const std::string& data_format,
                     MetaTensor* out,
                     MetaConfig config) {
C
Chen Weihang 已提交
602 603 604 605
  ConvInferMeta(input,
                filter,
                strides,
                paddings,
606
                padding_algorithm,
C
Chen Weihang 已提交
607
                dilations,
608
                groups,
C
Chen Weihang 已提交
609 610 611 612 613
                data_format,
                out,
                config);
}

F
From00 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
void ConvTransposeInferMeta(const MetaTensor& x,
                            const MetaTensor& filter,
                            const std::vector<int>& strides,
                            const std::vector<int>& paddings,
                            const std::vector<int>& output_padding,
                            const std::vector<int>& output_size,
                            const std::string& padding_algorithm,
                            int groups,
                            const std::vector<int>& dilations,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config) {
  auto x_dims = x.dims();
  auto filter_dims = filter.dims();

  std::vector<int> paddings_ = paddings;
  std::vector<int> dilations_ = dilations;

632 633 634
  const DataLayout data_layout = config.is_run_mkldnn_kernel
                                     ? DataLayout::kNCHW
                                     : phi::StringToDataLayout(data_format);
F
From00 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

  PADDLE_ENFORCE_EQ(
      x_dims.size() == 4 || x_dims.size() == 5,
      true,
      errors::InvalidArgument("Input of Op(conv_transpose) should be 4-D or "
                              "5-D Tensor. But received: %u-D Tensor, "
                              "the shape of input is [%s]",
                              x_dims.size(),
                              x_dims));
  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      filter_dims.size(),
      errors::InvalidArgument(
          "The input's dimension size and filter's dimension size of "
          "Op (conv_transpose) should be equal. But received: the shape of "
          "input is [%s], the dimension size of input is [%d], the shape "
          "of filter is [%s],  the dimension size of filter is [%d]. ",
          x_dims,
          x_dims.size(),
          filter_dims,
          filter_dims.size()));

  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i],
        0,
        errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = x_dims.size() - stride_size;

  PADDLE_ENFORCE_EQ(
      x_dims.size() - strides.size(),
      2U,
      errors::InvalidArgument(
          "The input's dimension size minus Attr(stride)'s size must "
          "be euqal to 2 for Op(conv_transpose). But received: [%d], the "
          "input's dimension size is [%d], the shape of input "
          "is [%s], the Attr(stride)'s size is [%d].",
          in_sub_stride_size,
          x_dims.size(),
          x_dims,
          strides.size()));
  if (output_size.size())
    PADDLE_ENFORCE_EQ(
        output_size.size(),
        strides.size(),
        errors::InvalidArgument(
            "The Attr(output_size) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));
  if (output_padding.size())
    PADDLE_ENFORCE_EQ(
        output_padding.size(),
        strides.size(),
        errors::InvalidArgument(
            "The Attr(output_padding) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));

  const int64_t C =
      (data_layout != DataLayout::kNHWC ? x_dims[1]
                                        : x_dims[x_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C,
      filter_dims[0],
      errors::InvalidArgument(
          "The number of input channels should be equal to filter channels "
          "for Op(conv_transpose). But received: the input's channels is "
          "[%d], the shape of input is [%s], the filter's channels is [%d], "
          "the shape of filter is [%s]. The data_format is %s."
          "The error may come from wrong data_format setting.",
          C,
          x_dims,
          filter_dims[0],
          filter_dims,
          data_format));

  DDim x_data_dims;
  if (data_layout != DataLayout::kNHWC) {
    x_data_dims = slice_ddim(x_dims, 2, x_dims.size());
  } else {
    x_data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1);
  }
  DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings_, &dilations_, padding_algorithm, x_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({x_dims[0]});
  if (data_layout != DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }
  const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
  for (size_t i = 0; i < strides.size(); ++i) {
    auto filter_extent = dilations_[i] * (filter_dims[i + 2] - 1) + 1;
    auto infer_shape = (config.is_runtime || x_dims[i + offset] > 0)
                           ? (x_dims[i + offset] - 1) * strides[i] -
                                 paddings_[2 * i] - paddings_[2 * i + 1] +
                                 filter_extent
                           : -1;
    if (output_size.size()) {
      if (config.is_runtime) {
        PADDLE_ENFORCE_GE(
            output_size[i],
            infer_shape,
            errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should not be "
                "less than the infered output size. But received output_size = "
                "[%s], whose dim %d is less than the infered output size [%s]",
                make_ddim(output_size).to_str(),
                i,
                infer_shape));
        PADDLE_ENFORCE_LT(
            output_size[i],
            infer_shape + strides[i],
            errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should be less "
                "than infered size + stride. But received output_size = [%s], "
                "whose dim %d is not less than the infered output size (%d) + "
                "stride (%d) = %d",
                make_ddim(output_size).to_str(),
                i,
                infer_shape,
                strides[i],
                infer_shape + strides[i]));
      }
      output_shape.push_back(output_size[i]);
    } else if (output_padding.size()) {
      if (config.is_runtime) {
        PADDLE_ENFORCE_GE(
            output_padding[i],
            0,
            errors::InvalidArgument(
                "output_padding of Op(ConvTransposeOp) should not be "
                "less than the 0. But received output_padding = "
                "[%s], whose dim %d is less than 0",
                make_ddim(output_padding).to_str(),
                i));
        PADDLE_ENFORCE_LT(
            output_padding[i],
            std::max(strides[i], dilations_[i]),
            errors::InvalidArgument(
                "output_padding of Op(ConvTransposeOp) should be less "
                "than either stride or dilation. But received output_size = "
                "[%s], "
                "whose dim %d is not less than either stride (%d)  or "
                "dilation (%d)",
                make_ddim(output_size).to_str(),
                i,
                strides[i],
                dilations_[i]));
      }
      output_shape.push_back((infer_shape + output_padding[i]));
    } else {
      output_shape.push_back(infer_shape);
    }
  }
  if (data_layout == DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }

  out->set_dims(make_ddim(output_shape));
  out->set_dtype(x.dtype());
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
void Conv2dTransposeInferMeta(const MetaTensor& x,
                              const MetaTensor& filter,
                              const std::vector<int>& strides,
                              const std::vector<int>& paddings,
                              const std::vector<int>& output_padding,
                              const IntArray& output_size,
                              const std::string& padding_algorithm,
                              int groups,
                              const std::vector<int>& dilations,
                              const std::string& data_format,
                              MetaTensor* out,
                              MetaConfig config) {
  std::vector<int32_t> vec_output_size(output_size.GetData().begin(),
                                       output_size.GetData().end());
  ConvTransposeInferMeta(x,
                         filter,
                         strides,
                         paddings,
                         output_padding,
                         vec_output_size,
                         padding_algorithm,
                         groups,
                         dilations,
                         data_format,
                         out,
                         config);
}

F
From00 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
void CrossInferMeta(const MetaTensor& x,
                    const MetaTensor& y,
                    int axis,
                    MetaTensor* out) {
  auto x_dim = x.dims();
  auto y_dim = y.dims();
  auto dim = axis;

  bool dims_match = phi::funcs::CheckDims(x_dim, y_dim);
  PADDLE_ENFORCE_EQ(
      dims_match,
      true,
      phi::errors::InvalidArgument("The 'shape' of Input(X) should be equal to "
                                   "the 'shape' of Input(Y). But received "
                                   "Input(X).dimensions = [%s], "
                                   "Input(Y).dimensions = [%s]",
                                   x_dim,
                                   y_dim));

  if (dim != DDim::kMaxRank) {
    PADDLE_ENFORCE_EQ(
        dim < x_dim.size() && dim >= (0 - x_dim.size()),
        true,
        phi::errors::OutOfRange(
            "Attr(dim) is out of range, It's expected "
            "to be in range of [-%d, %d]. But received Attr(dim) = %d.",
            x_dim.size(),
            x_dim.size() - 1,
            dim));
    if (dim < 0) {
      dim += x_dim.size();
    }
    PADDLE_ENFORCE_EQ(x_dim[dim] == 3 && y_dim[dim] == 3,
                      true,
                      phi::errors::InvalidArgument(
                          "Input(X/Y).dims()[dim] should be equal to 3."
                          "But received Input(X/Y).dims()[dim] = %d.",
                          x_dim[dim]));
  }
  out->set_dims(x_dim);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
void CrossEntropyWithSoftmaxInferMeta(const MetaTensor& logits,
                                      const MetaTensor& label,
                                      bool soft_label,
                                      bool use_softmax,
                                      bool numeric_stable_mode,
                                      int ignore_index,
                                      int axis,
                                      MetaTensor* softmax,
                                      MetaTensor* loss,
                                      MetaConfig config) {
  auto logits_dims = logits.dims();
  auto labels_dims = label.dims();
  auto logits_rank = logits_dims.size();
  PADDLE_ENFORCE_GE(axis,
                    -logits_rank,
                    phi::errors::InvalidArgument(
                        "Attr(axis) value should be in range [-R, R-1], "
                        "R is the rank of Input(Logits)."));
  PADDLE_ENFORCE_LT(axis,
                    logits_rank,
                    phi::errors::InvalidArgument(
                        "Attr(axis) value should be in range [-R, R-1], "
                        "R is the rank of Input(Logits)."));

  axis = phi::funcs::CanonicalAxis(axis, logits_rank);
  for (int i = 0; i < logits_rank; i++) {
    if (i != axis) {
      if (config.is_runtime || (logits_dims[i] > 0 && labels_dims[i] > 0)) {
        PADDLE_ENFORCE_EQ(logits_dims[i],
                          labels_dims[i],
                          phi::errors::InvalidArgument(
                              "Input(Logits) and Input(Label) should in "
                              "same shape in dimensions except axis."));
      }
    }
  }

  if (axis != logits_rank - 1) {
    PADDLE_ENFORCE_EQ(
        numeric_stable_mode,
        true,
        phi::errors::InvalidArgument("Attr(axis) can only be -1 "
                                     "when not in numeric_stable_mode."));
  }

  if (soft_label) {
    if (config.is_runtime || (logits_dims[axis] > 0 && labels_dims[axis] > 0)) {
      PADDLE_ENFORCE_EQ(logits_dims[axis],
                        labels_dims[axis],
                        phi::errors::InvalidArgument(
                            "If Attr(soft_label) == true,  "
                            "the axis dimension of "
                            "Input(X) and Input(Label) should be equal."));
    }
  } else {
    if (config.is_runtime || labels_dims[axis] > 0) {
      PADDLE_ENFORCE_EQ(
          labels_dims[axis],
          1UL,
          phi::errors::InvalidArgument("If Attr(soft_label) == false, "
                                       "the axis dimension of "
                                       "Input(Label) should be 1."));
    }
  }

  softmax->set_dims(logits_dims);
  softmax->set_dtype(logits.dtype());

  logits_dims[axis] = 1;
  loss->set_dims(logits_dims);
  loss->set_dtype(logits.dtype());

  softmax->share_lod(logits);
  loss->share_lod(logits);
}

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
void DepthwiseConvInferMeta(const MetaTensor& input,
                            const MetaTensor& filter,
                            const std::vector<int>& strides,
                            const std::vector<int>& paddings,
                            const std::string& padding_algorithm,
                            int groups,
                            const std::vector<int>& dilations,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config) {
  ConvInferMeta(input,
                filter,
                strides,
                paddings,
                padding_algorithm,
                dilations,
                groups,
                data_format,
                out,
                config);
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
void DistInferMeta(const MetaTensor& x,
                   const MetaTensor& y,
                   float p,
                   MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  PADDLE_ENFORCE_NE(phi::product(x_dims),
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(X) has not been initialized properly. The "
                        "shape of Input(X) = [%s].",
                        x_dims));
  PADDLE_ENFORCE_NE(phi::product(y_dims),
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(Y) has not been initialized properly. The "
                        "shape of Input(Y) = [%s].",
                        y_dims));
  out->set_dims({1});
  out->set_dtype(x.dtype());
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
void DistributeFpnProposalsInferMeta(
    const MetaTensor& fpn_rois,
    const MetaTensor& rois_num,
    int min_level,
    int max_level,
    int refer_level,
    int refer_scale,
    bool pixel_offset,
    std::vector<MetaTensor*> multi_fpn_rois,
    std::vector<MetaTensor*> multi_level_rois_num,
    MetaTensor* restore_index,
    MetaConfig config) {
  PADDLE_ENFORCE_GE(
      multi_fpn_rois.size(),
      1UL,
      errors::InvalidArgument("Outputs(MultiFpnRois) of "
                              "DistributeFpnProposalsOp should not be empty"));
  PADDLE_ENFORCE_GE(
      max_level,
      min_level,
      errors::InvalidArgument(
          "max_level must not lower than "
          "min_level. But received max_level = %d, min_level = %d",
          max_level,
          min_level));
  // Set the output shape
  for (size_t i = 0; i < multi_fpn_rois.size(); ++i) {
    DDim out_dim = {-1, 4};
    if (multi_fpn_rois[i] == nullptr) {
      continue;
    }
    multi_fpn_rois[i]->set_dims(out_dim);
    multi_fpn_rois[i]->set_dtype(fpn_rois.dtype());
  }
  restore_index->set_dims({-1, 1});
  restore_index->set_dtype(DataType::INT32);
  for (size_t i = 0; i < multi_level_rois_num.size(); ++i) {
    if (multi_level_rois_num[i] == nullptr) {
      continue;
    }
    multi_level_rois_num[i]->set_dims({-1});
    multi_level_rois_num[i]->set_dtype(DataType::INT32);
  }

  if (!config.is_runtime) {
    for (size_t i = 0; i < multi_fpn_rois.size(); ++i) {
      multi_fpn_rois[i]->share_lod(fpn_rois);
    }
  }
}

H
hong 已提交
1048
void DropoutInferMeta(const MetaTensor& x,
1049
                      const MetaTensor& seed_tensor,
1050
                      const Scalar& p,
H
hong 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
                      bool is_test,
                      const std::string& mode,
                      int seed,
                      bool fix_seed,
                      MetaTensor* out,
                      MetaTensor* mask) {
  auto x_dims = x.dims();
  out->set_dims(x_dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());

  if (mask != nullptr) {
    mask->set_dims(x_dims);
    mask->set_dtype(DataType::UINT8);
  }
}

1068 1069
void DropoutNdInferMeta(const MetaTensor& x,
                        const MetaTensor& seed_tensor,
1070
                        const Scalar& p,
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
                        bool is_test,
                        const std::string& mode,
                        int seed,
                        bool fix_seed,
                        const std::vector<int>& axis,
                        MetaTensor* out,
                        MetaTensor* mask) {
  auto x_dims = x.dims();

  PADDLE_ENFORCE_LE(
      axis.size(),
      x_dims.size(),
      phi::errors::InvalidArgument(
          "The length of axis is expected to be less than or equal to the "
S
Shuangchi He 已提交
1085
          "dimension size of x. But received the length of axis is %d, the "
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
          "dimension size of x is %d, x's shape is {%s}.",
          axis.size(),
          x_dims.size(),
          x_dims));
  for (size_t i = 0; i < axis.size(); ++i) {
    PADDLE_ENFORCE_EQ(
        axis[i] >= 0 && axis[i] <= x_dims.size() - 1,
        true,
        phi::errors::InvalidArgument(
            "The %d-th value of axis is expected to be greater ot "
            "equal to 0 and less than the dimensions of x. But "
S
Shuangchi He 已提交
1097
            "received axis is {%s}, the dimension size of x is %d.",
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
            i,
            phi::make_ddim(axis),
            x_dims.size()));
  }

  out->set_dims(x_dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());

  if (mask != nullptr) {
    std::vector<int64_t> mask_dims(x.dims().size(), 1);

    std::for_each(
        axis.begin(), axis.end(), [&mask_dims, &x_dims](const int64_t& t) {
          mask_dims[t] = x_dims[t];
        });

    mask->set_dims(make_ddim(mask_dims));
    mask->set_dtype(DataType::UINT8);
  }
}

1120 1121
void DotInferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
  auto x_dims = x.dims();
1122 1123 1124
  auto x_rank = static_cast<size_t>(x_dims.size());
  PADDLE_ENFORCE_EQ(true,
                    1 == x_rank || 2 == x_rank,
1125
                    phi::errors::PreconditionNotMet(
1126 1127 1128 1129
                        "ShapeError: The dimensions of input tensor X (%s) "
                        "should be 1 or 2",
                        x_dims.to_str()));

1130
  auto y_dims = y.dims();
1131 1132
  PADDLE_ENFORCE_EQ(
      true,
1133
      x_rank == static_cast<size_t>(y_dims.size()),
1134
      phi::errors::PreconditionNotMet(
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
          "ShapeError: The shape of input tensor Y: %s should match with "
          "input tenosr X: %s",
          y_dims.to_str(),
          x_dims.to_str()));
  bool shape_match = true;
  for (size_t i = 0; i < x_rank; ++i) {
    if (x_dims[i] != y_dims[i]) {
      shape_match = false;
      break;
    }
  }

  PADDLE_ENFORCE_EQ(true,
                    shape_match,
1149
                    phi::errors::PreconditionNotMet(
1150 1151 1152 1153 1154 1155 1156
                        "ShapeError: The shape of input tensor X: %s should "
                        "be exactly the same "
                        "with input tensor Y: %s",
                        x_dims.to_str(),
                        y_dims.to_str()));

  x_dims[x_dims.size() - 1] = 1;
1157 1158 1159
  out->set_dims(x_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
1160 1161
}

1162 1163 1164 1165 1166
void ElementwiseInferMeta(const MetaTensor& x,
                          const MetaTensor& y,
                          MetaTensor* out) {
  return ElementwiseRawInferMeta(x, y, -1, std::move(out));
}
1167

1168 1169 1170 1171 1172 1173 1174
void ElementwiseRawInferMeta(const MetaTensor& x,
                             const MetaTensor& y,
                             int axis,
                             MetaTensor* out) {
  if (x.dims() != y.dims()) {
    auto x_dims = x.dims();
    auto y_dims = y.dims();
1175 1176 1177 1178
    int max_dim = std::max(x_dims.size(), y_dims.size());
    if (x_dims.size() == y_dims.size()) {
      PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0),
                        true,
1179
                        phi::errors::InvalidArgument(
1180 1181 1182 1183 1184 1185 1186 1187 1188
                            "axis should be -1 or 0 while the dimension of "
                            "tensor X (%s) is equal to the dimension of "
                            "tensor Y (%s), but received axis: %s",
                            x_dims.size(),
                            y_dims.size(),
                            axis));
    }
    PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim),
                      true,
1189
                      phi::errors::InvalidArgument(
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
                          "The axis range must be [%s, %s), but axis is %s. "
                          "Please set the axis again.",
                          -1 * max_dim,
                          max_dim,
                          axis));
    axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                     : axis);
    std::vector<int> x_dims_array(max_dim);
    std::vector<int> y_dims_array(max_dim);
    std::vector<int> out_dims_array(max_dim);
1200 1201 1202
    funcs::GetBroadcastDimsArrays(x_dims,
                                  y_dims,
                                  x_dims_array.data(),
1203 1204 1205 1206 1207 1208
                                  y_dims_array.data(),
                                  out_dims_array.data(),
                                  max_dim,
                                  axis);
    auto out_dims = phi::make_ddim(out_dims_array);
    out->set_dims(out_dims);
0
0x45f 已提交
1209
  } else {
1210
    out->set_dims(x.dims());
0
0x45f 已提交
1211 1212
  }

Z
Zhong Hui 已提交
1213
  out->set_dtype(x.dtype());
1214 1215
  out->set_layout(x.layout());
  out->share_lod(x);
Z
Zhong Hui 已提交
1216 1217
}

Z
zyfncg 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
void EmbeddingInferMeta(const MetaTensor& x,
                        const MetaTensor& weight,
                        int64_t padding_idx,
                        MetaTensor* out) {
  const auto& table_dims = weight.dims();
  const auto& ids_dims = x.dims();
  int ids_rank = ids_dims.size();
  VLOG(5) << "ids rank is " << ids_rank << std::endl;
  PADDLE_ENFORCE_EQ(
      table_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "ShapeError: The dimensions of the 'lookup table' must be 2. "
          "But received lookup table's dimensions = %d, "
          "lookup table's shape = [%s].",
          table_dims.size(),
          table_dims));

  auto output_dims = phi::vectorize(ids_dims);
  output_dims.push_back(table_dims[1]);
  out->set_dims(phi::make_ddim(output_dims));
  out->set_dtype(weight.dtype());
  out->share_lod(x);
}

1243
void ExpandAsInferMeta(const MetaTensor& x,
1244
                       const MetaTensor& y,
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
                       const std::vector<int>& target_shape,
                       MetaTensor* out) {
#define MAX_RANK_SUPPORTED 6
  auto x_dims = x.dims();
  PADDLE_ENFORCE_GE(
      target_shape.size(),
      static_cast<size_t>(x_dims.size()),
      phi::errors::InvalidArgument(
          "The rank of target_shape must be greater than or equal "
          "to the rank of Input(X). But received Input(X): input "
          "rank %u; received target_shape: rank %u.",
          x_dims.size(),
          target_shape.size()));
  PADDLE_ENFORCE_LE(target_shape.size(),
                    MAX_RANK_SUPPORTED,
                    phi::errors::InvalidArgument(
                        "The rank of target_shape must be less than or equal "
                        "to %d. But received: rank %u.",
                        MAX_RANK_SUPPORTED,
                        target_shape.size()));
  out->set_dims(phi::make_ddim(target_shape));
  out->set_dtype(x.dtype());
#undef MAX_RANK_SUPPORTED
}

Z
zhiboniu 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
void FillDiagonalTensorInferMeta(const MetaTensor& x,
                                 const MetaTensor& y,
                                 int64_t offset,
                                 int dim1,
                                 int dim2,
                                 MetaTensor* out) {
  PADDLE_ENFORCE_NOT_NULL(out,
                          phi::errors::InvalidArgument(
                              "Output Tensor (out) should not be nullptr."));
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
}

S
ShenLiang 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
void FusedDropoutAddInferMeta(const MetaTensor& x,
                              const MetaTensor& y,
                              MetaTensor* out,
                              MetaTensor* seed_offset) {
  out->share_meta(x);
  if (seed_offset) {
    seed_offset->set_dims({2});
    seed_offset->set_dtype(DataType::INT64);
  }
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
// Used in FusedMatmulInferMeta
static std::vector<int64_t> GetInputShape(phi::DDim dim,
                                          std::vector<int> shape,
                                          std::vector<int> axis) {
  PADDLE_ENFORCE_GT(dim.size(),
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));

  auto is_input_fused = (!shape.empty() && !axis.empty());
  if (is_input_fused) {
    dim = dim.reshape(shape).transpose(axis);
  }
  return phi::vectorize(dim);
}

void FusedMatmulInferMeta(const MetaTensor& x,
                          const MetaTensor& y,
                          const MetaTensor& residual_data,
                          bool transpose_x,
                          bool transpose_y,
                          const float matmul_alpha,
                          const std::string& fuse_activation,
                          const float fuse_lapha,
                          const float fuse_beat,
                          const float fused_output_scale,
                          const std::vector<int>& fused_reshape_X,
                          const std::vector<int>& fused_transpose_X,
                          const std::vector<int>& fused_reshape_Y,
                          const std::vector<int>& fused_transpose_Y,
                          const std::vector<int>& fused_reshape_Out,
                          const std::vector<int>& fused_transpose_Out,
                          const std::string& mkldnn_data_type,
                          const float scale_x,
                          const float scale_y,
                          const float scale_scale_in_eltwise,
                          const float scale_out,
                          const bool force_fp32_output,
                          MetaTensor* out) {
  std::vector<int64_t> dims_x =
      GetInputShape(x.dims(), fused_reshape_X, fused_transpose_X);
  std::vector<int64_t> dims_y =
      GetInputShape(y.dims(), fused_reshape_Y, fused_transpose_Y);
  auto ndims_x = dims_x.size();
  auto ndims_y = dims_y.size();
  PADDLE_ENFORCE_GT(ndims_x,
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(X) dims size must be greater than 0,"
                        " but received dims size is 0. "));
  PADDLE_ENFORCE_GT(ndims_y,
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(Y) dims size must be greater than 0,"
                        " but received dims size is 0. "));
  bool x_broadcasted = false;
  bool y_broadcasted = false;

  if (ndims_x == 1) {
    dims_x.insert(dims_x.begin(), 1);
    ndims_x = 2;
    x_broadcasted = true;
  }

  if (ndims_y == 1) {
    dims_y.push_back(1);
    ndims_y = 2;
    y_broadcasted = true;
  }

  size_t M, N;
  if (transpose_x) {
    M = dims_x[ndims_x - 1];
  } else {
    M = dims_x[ndims_x - 2];
  }
  if (transpose_y) {
    N = dims_y[ndims_y - 2];
  } else {
    N = dims_y[ndims_y - 1];
  }

  std::vector<int64_t> new_dims;
  if (ndims_x > ndims_y) {
    new_dims.assign(dims_x.begin(), dims_x.end() - 2);
  } else if (ndims_x < ndims_y) {
    new_dims.assign(dims_y.begin(), dims_y.end() - 2);
  } else {
    new_dims.reserve(ndims_x);
    for (size_t i = 0; i < ndims_x - 2; ++i) {
      new_dims.push_back(std::max(dims_x[i], dims_y[i]));
    }
  }
  if (!x_broadcasted) {
    new_dims.push_back(M);
  }
  if (!y_broadcasted) {
    new_dims.push_back(N);
  }
  if (x_broadcasted && y_broadcasted) {
    new_dims.push_back(1);
  }

  auto ddim_out = phi::make_ddim(new_dims);

  std::vector<int> shape = fused_reshape_Out;
  const std::vector<int>& axis = fused_transpose_Out;

  auto is_output_fused = (!shape.empty() && !axis.empty());
  if (is_output_fused) {
    ddim_out = ddim_out.transpose(axis).reshape(shape);
  }
  out->set_dims(ddim_out);
  bool is_int8 = (x.dtype() == DataType::UINT8 || x.dtype() == DataType::INT8);
  bool is_bfloat16 = (x.dtype() == DataType::BFLOAT16);
  bool fuse_relu = false;
  if (fuse_activation == "relu" || fuse_activation == "relu6") {
    fuse_relu = true;
  }
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
    out->set_dtype(DataType::FLOAT32);
  } else if (is_bfloat16) {
    out->set_dtype(DataType::BFLOAT16);
  } else if (fuse_relu) {
    out->set_dtype(DataType::UINT8);
  } else {
    out->set_dtype(DataType::INT8);
  }
}

C
Chen Weihang 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
void GatherInferMeta(const MetaTensor& x,
                     const MetaTensor& index,
                     const Scalar& axis,
                     MetaTensor* out) {
  auto index_dims = index.dims();

  if (index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(
        index_dims[1],
        1,
        phi::errors::InvalidArgument(
            "The last dim of index should be 1 when it is 2D, but we get %d",
            index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
1441 1442
        index_dims.size() == 1 || index_dims.size() == 0,
        true,
C
Chen Weihang 已提交
1443
        phi::errors::InvalidArgument(
1444
            "The index should be 0D or 1D, when it is not 2D, but we get %d",
C
Chen Weihang 已提交
1445 1446 1447 1448 1449
            index_dims.size()));
  }

  auto input_dim = x.dims();
  auto axis_v = axis.to<int>();
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
  if (axis_v < 0) axis_v += input_dim.size();

  PADDLE_ENFORCE_GE(
      axis_v,
      (0 - input_dim.size()),
      phi::errors::OutOfRange(
          "Attr(axis) is out of range, It's expected "
          "to be in range of [%d, %d]. But received Attr(axis) = %d.",
          -input_dim.size(),
          input_dim.size() - 1,
          axis_v));
  PADDLE_ENFORCE_LT(
      axis_v,
      input_dim.size(),
      phi::errors::OutOfRange(
          "Attr(axis) is out of range, It's expected "
          "to be in range of [%d, %d]. But received Attr(axis) = %d.",
          -input_dim.size(),
          input_dim.size() - 1,
          axis_v));

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
  if (index_dims.size() == 0) {
    // 0D index will decrease the dimension
    if (input_dim.size() == 1) {
      // the index is a 0D tensor and the x is a 1D tensor
      out->set_dims(phi::DDim(phi::Dim<0>()));
    } else {
      if (axis.FromTensor() || axis_v == 0) {
        // decrease the output dimension
        std::vector<int> out_dim_vec;
        for (int i = 1; i < input_dim.size(); ++i) {
          out_dim_vec.emplace_back(input_dim[i]);
        }
        auto output_dims = phi::make_ddim(out_dim_vec);
        out->set_dims(output_dims);
        out->set_dtype(x.dtype());
        out->share_lod(x);
      } else {
        std::vector<int> out_dim_vec;
        for (int i = 0; i < axis_v; i++) {
          out_dim_vec.push_back(input_dim[i]);
        }
        for (int i = axis_v + 1; i < input_dim.size(); i++) {
          out_dim_vec.push_back(input_dim[i]);
        }
        auto output_dims = phi::make_ddim(out_dim_vec);
        out->set_dims(output_dims);
        out->set_dtype(x.dtype());
        out->share_lod(x);
      }
C
Chen Weihang 已提交
1500
    }
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
  } else {
    if (axis.FromTensor() || axis_v == 0) {
      // if axis.FromTensor(), we can not obtain correct shape of output
      int batch_size = index_dims[0];
      phi::DDim output_dims(input_dim);
      output_dims[0] = batch_size;
      out->set_dims(output_dims);
      out->set_dtype(x.dtype());
      out->share_lod(x);
    } else {
      int index_size = index_dims[0];
      std::vector<int> out_dim_vec;
      for (int i = 0; i < axis_v; i++) {
        out_dim_vec.push_back(input_dim[i]);
      }
      out_dim_vec.push_back(index_size);
      for (int i = axis_v + 1; i < input_dim.size(); i++) {
        out_dim_vec.push_back(input_dim[i]);
      }
      auto output_dims = phi::make_ddim(out_dim_vec);
      out->set_dims(output_dims);
      out->set_dtype(x.dtype());
      out->share_lod(x);
C
Chen Weihang 已提交
1524 1525 1526 1527
    }
  }
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
void GatherNdInferMeta(const MetaTensor& x,
                       const MetaTensor& index,
                       MetaTensor* out) {
  auto x_dims = x.dims();
  auto x_dims_size = x_dims.size();
  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();

  PADDLE_ENFORCE_LE(
      index_dims[index_dims_size - 1],
      x_dims_size,
      phi::errors::InvalidArgument(
          "Input(Index).shape[-1] should be no greater than Input(X).rank"));
  PADDLE_ENFORCE_GE(index_dims_size,
                    1UL,
                    phi::errors::InvalidArgument(
                        "The rank of Input(Index) should be greater than 1"));

  std::vector<int64_t> result_dims;
  // The result dims is
  //   Index.shape[:-1] + X.shape[Index.shape[-1]:]
  for (int i = 0; i < index_dims_size - 1; ++i) {
    result_dims.emplace_back(index_dims[i]);
  }
  for (int i = index_dims[index_dims_size - 1]; i < x_dims_size; ++i) {
    result_dims.emplace_back(x_dims[i]);
  }

  out->set_dims(phi::make_ddim(result_dims));
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

C
crystal 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
void GatherTreeMeta(const MetaTensor& ids,
                    const MetaTensor& parents,
                    MetaTensor* out) {
  auto ids_dims = ids.dims();
  auto parents_dims = parents.dims();
  PADDLE_ENFORCE_EQ(ids_dims == parents_dims,
                    true,
                    phi::errors::InvalidArgument(
                        "The shape of Input(Parents) must be same with the "
                        "shape of Input(Ids)."));
  out->set_dims(ids_dims);
}

1574 1575 1576 1577 1578 1579
void GridSampleBaseInferMeta(const MetaTensor& x,
                             const MetaTensor& grid,
                             MetaTensor* out,
                             MetaConfig config) {
  auto x_dims = x.dims();
  auto grid_dims = grid.dims();
1580
  PADDLE_ENFORCE_GE(x_dims.size(),
1581 1582 1583 1584 1585
                    4,
                    phi::errors::InvalidArgument(
                        "Input(X) of GridSampleOp should be 4-D Tensor, but "
                        "received X dimension size(%d)",
                        x_dims.size()));
1586 1587 1588 1589 1590 1591 1592
  PADDLE_ENFORCE_LE(x_dims.size(),
                    5,
                    phi::errors::InvalidArgument(
                        "Input(X) of GridSampleOp should be 4-D Tensor, but "
                        "received X dimension size(%d)",
                        x_dims.size()));
  PADDLE_ENFORCE_GE(grid_dims.size(),
1593 1594 1595 1596 1597
                    4,
                    phi::errors::InvalidArgument(
                        "Input(Grid) of GridSampleOp should be 4-D Tensor, "
                        "but received X dimension size(%d)",
                        grid_dims.size()));
1598 1599 1600 1601 1602 1603 1604
  PADDLE_ENFORCE_LE(grid_dims.size(),
                    5,
                    phi::errors::InvalidArgument(
                        "Input(Grid) of GridSampleOp should be 4-D Tensor, "
                        "but received X dimension size(%d)",
                        grid_dims.size()));
  if (grid_dims.size() == 4 && (config.is_runtime || grid_dims[3] > 0)) {
1605 1606 1607 1608 1609 1610 1611
    PADDLE_ENFORCE_EQ(
        grid_dims[3],
        2,
        phi::errors::InvalidArgument(
            "Input(Grid) dimension[3] should be 2, but received %d",
            grid_dims[3]));
  }
1612 1613 1614 1615 1616 1617 1618 1619
  if (grid_dims.size() == 5 && (config.is_runtime || grid_dims[4] > 0)) {
    PADDLE_ENFORCE_EQ(
        grid_dims[4],
        3,
        phi::errors::InvalidArgument(
            "Input(Grid) dimension[4] should be 3, but received %d",
            grid_dims[4]));
  }
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        grid_dims[0],
        x_dims[0],
        phi::errors::InvalidArgument(
            "Input(X) and Input(Grid) dimension[0] should be equal, but "
            "received X dimension[0](%d) != Grid dimension[0](%d)",
            x_dims[0],
            grid_dims[0]));
  }
1630 1631 1632 1633 1634 1635
  if (grid_dims.size() == 4) {
    out->set_dims({x_dims[0], x_dims[1], grid_dims[1], grid_dims[2]});
  } else {
    out->set_dims(
        {x_dims[0], x_dims[1], grid_dims[1], grid_dims[2], grid_dims[3]});
  }
1636 1637 1638 1639
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
void HuberLossInferMeta(const MetaTensor& input,
                        const MetaTensor& label,
                        float delta,
                        MetaTensor* out,
                        MetaTensor* residual,
                        MetaConfig config) {
  auto input_dims = input.dims();
  auto label_dims = label.dims();

  PADDLE_ENFORCE_EQ(input_dims.size(),
                    label_dims.size(),
                    phi::errors::InvalidArgument(
                        "Input(input) rank and Input(label) rank should be "
                        "same, but received input rank(%d) != label rank(%d)",
                        input_dims.size(),
                        label_dims.size()));

  bool contain_unknown_dim = phi::contain_unknown_dim(input_dims) ||
                             phi::contain_unknown_dim(label_dims);
  if (config.is_runtime || !contain_unknown_dim) {
    PADDLE_ENFORCE_EQ(
        input_dims,
        label_dims,
        phi::errors::InvalidArgument(
            "The Input(input) and Input(label) should have the same "
            "shape, but received input shape [%s] != label shape [%s]",
            input_dims,
            label_dims));
  }

  auto out_dims = label_dims;
  residual->set_dims(out_dims);
  out->set_dims(out_dims);
  out->share_lod(input);
}

void IndexSampleInferMeta(const MetaTensor& x,
                          const MetaTensor& y,
                          MetaTensor* out,
                          MetaConfig config) {
  auto input_dims = x.dims();
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    2,
                    errors::InvalidArgument(
                        "Inputs(X) shape of IndexSample op should be 2-D, but "
                        "got X's shape = [%s], please check X shape.",
                        input_dims));

  auto index_dims = y.dims();
  PADDLE_ENFORCE_EQ(
      index_dims.size(),
      2,
      errors::InvalidArgument(
          "Inputs(Index) shape of IndexSample op should be 2-D, but "
          "got Index's shape [%s] , please check index shape.",
          input_dims));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(input_dims[0],
                      index_dims[0],
                      errors::InvalidArgument(
                          "Inputs(X)'s value of dimension 0 must same with "
                          "Inputs(Index)'s value of dimension 0, but "
                          "got %d of Inputs(X), and got %d of Inputs(Index), "
                          "please check Inputs shape.",
                          input_dims[0],
                          index_dims[0]));
  }
  out->set_dtype(x.dtype());
  out->set_dims(index_dims);
  out->share_lod(y);
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
void IndexSelectInferMeta(const MetaTensor& x,
                          const MetaTensor& index,
                          int dim,
                          MetaTensor* output) {
  auto input_dim = x.dims();
  auto index_dim = index.dims();

  PADDLE_ENFORCE_EQ(
      dim < input_dim.size() && dim >= (0 - input_dim.size()),
      true,
      phi::errors::OutOfRange(
          "Attr(dim) is out of range, It's expected "
          "to be in range of [-%d, %d]. But received Attr(dim) = %d.",
          input_dim.size(),
          input_dim.size() - 1,
          dim));

  PADDLE_ENFORCE_EQ(
      index_dim.size() == 1 || (index_dim.size() == 2 && index_dim[1] == 1),
      true,
      phi::errors::InvalidArgument(
          "The 'shape' of Input(Index) must be 1-D tensor. "
          "But received: the 'shape' of Input(Index) is [%s], "
          "the dimension of Input(Index) is [%d].",
          index_dim,
          index_dim.size()));

  PADDLE_ENFORCE_EQ(
      index_dim[0] != 0,
      true,
      phi::errors::InvalidArgument("The length of Input(Index) can't be 0."));

  auto output_dim = phi::vectorize(input_dim);
  if (dim < 0) {
    dim += input_dim.size();
  }
  output_dim[dim] = index_dim[0];
  output->set_dims(phi::make_ddim(output_dim));
  output->set_dtype(x.dtype());
  output->set_layout(x.layout());
  output->share_lod(x);
}

L
Li Min 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
void IndexAddInferMeta(const MetaTensor& x,
                       const MetaTensor& index,
                       const MetaTensor& add_value,
                       int axis,
                       MetaTensor* output) {
  auto input_dim = x.dims();
  auto index_dim = index.dims();
  auto add_value_dim = add_value.dims();

  PADDLE_ENFORCE_EQ(
      axis < input_dim.size() && axis >= (0 - input_dim.size()),
      true,
      phi::errors::OutOfRange(
          "Attr(dim) is out of range, It's expected "
          "to be in range of [-%d, %d]. But received Attr(axis) = %d.",
          input_dim.size(),
          input_dim.size() - 1,
          axis));

  int real_axis = axis >= 0 ? axis : axis + input_dim.size();

  PADDLE_ENFORCE_EQ(index_dim.size() == 1,
                    true,
                    phi::errors::InvalidArgument(
                        "The 'shape' of Input(Index) must be 1-D tensor. "
                        "But received: the 'shape' of Input(Index) is [%s], "
                        "the dimension of Input(Index) is [%d].",
                        index_dim,
                        index_dim.size()));

  PADDLE_ENFORCE_EQ(
      index_dim[0] != 0,
      true,
      phi::errors::InvalidArgument("The length of Input(Index) can't be 0."));

  // Note, add_value does not support broadcast now.
  PADDLE_ENFORCE_EQ(input_dim.size() == add_value_dim.size(),
                    true,
                    phi::errors::InvalidArgument(
                        "The add_value must be the same dimension as x."));
  for (int i = 0; i < input_dim.size(); i++) {
    if (i != real_axis) {
      PADDLE_ENFORCE_EQ(input_dim[i] == add_value_dim[i],
                        true,
                        phi::errors::InvalidArgument(
                            "The add_value parameter does not supported "
                            "broadcast, so input_dim[i] must be equal to "
                            "add_value_dim[i] when i != axis."));
    }
  }

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
  const auto& index_type = index.dtype();
  bool index_type_match =
      index_type == phi::DataType::INT64 || index_type == phi::DataType::INT32;
  PADDLE_ENFORCE_EQ(index_type_match,
                    true,
                    phi::errors::InvalidArgument(
                        "Input(Index) holds the wrong type, it holds %s, but "
                        "desires to be %s or %s",
                        index_type,
                        phi::DataType::INT32,
                        phi::DataType::INT64));

L
Li Min 已提交
1818 1819 1820 1821 1822 1823
  output->set_dims(x.dims());
  output->set_dtype(x.dtype());
  output->set_layout(x.layout());
  output->share_lod(x);
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
void KronInferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
  auto dim_x = x.dims();
  auto dim_y = y.dims();
  auto rank_x = dim_x.size();
  auto rank_y = dim_y.size();
  auto rank = (rank_x > rank_y) ? rank_x : rank_y;

  std::vector<int64_t> dim_out;
  dim_out.reserve(rank);
  for (int i = 0; i < rank; i++) {
    int64_t dim_xi = (i < rank - rank_x) ? 1 : dim_x.at(i - (rank - rank_x));
    int64_t dim_yi = (i < rank - rank_y) ? 1 : dim_y.at(i - (rank - rank_y));
    dim_out.push_back(dim_xi == -1 || dim_yi == -1 ? -1 : dim_xi * dim_yi);
  }
  out->set_dims(phi::make_ddim(dim_out));
  out->set_dtype(x.dtype());
}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
void LogLossInferMeta(const MetaTensor& input,
                      const MetaTensor& label,
                      float epsilon,
                      MetaTensor* out,
                      MetaConfig config) {
  auto pred_dims = input.dims();
  auto label_dims = label.dims();

  if (config.is_runtime ||
      (phi::product(pred_dims) > 0 && phi::product(label_dims) > 0)) {
    PADDLE_ENFORCE_EQ(
        pred_dims,
        label_dims,
        phi::errors::InvalidArgument(
            "The dimensions of Input(Predicted) must be equal to the"
            "dimensions of Input(Labels), but received dimensions of "
            "Input(Predicted)"
            "is [%s], received dimensions of Input(Labels) is [%s].",
            pred_dims,
            label_dims));
  }
  PADDLE_ENFORCE_EQ(pred_dims.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "The dimensions of Input(Predicted) must be 2,"
                        "But received dimensions of Input(Predicted)"
                        "is [%d]",
                        pred_dims.size()));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(pred_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "Each row of Input(Predicted) contains a real value, "
                          "so the 2nd dimension of Input(X) must be 1,"
                          "But got [%d]",
                          pred_dims[1]));
  }
  out->set_dims({pred_dims[0], 1});
  out->set_dtype(input.dtype());
  out->share_lod(input);
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
void LUUnpackInferMeta(const MetaTensor& x,
                       const MetaTensor& pivots,
                       bool unpack_ludata,
                       bool unpack_pivots,
                       MetaTensor* pmat,
                       MetaTensor* l,
                       MetaTensor* u) {
  PADDLE_ENFORCE_NOT_NULL(
      pmat,
      phi::errors::InvalidArgument("Output(Pmat) should not be nullptr."));
  PADDLE_ENFORCE_NOT_NULL(
      l, phi::errors::InvalidArgument("Output(L) should not be nullptr."));
  PADDLE_ENFORCE_NOT_NULL(
      u, phi::errors::InvalidArgument("Output(U) should not be nullptr."));

  auto x_dims = x.dims();
  int x_rank = x_dims.size();
  PADDLE_ENFORCE_GE(
      x_rank,
      2,
      phi::errors::InvalidArgument("The rank of input must greater than 2."));

  int m = x_dims[x_rank - 1];
  int n = x_dims[x_rank - 2];
  int min_mn = std::min(m, n);
  if (unpack_ludata) {
    auto ldims = x_dims;
    auto udims = x_dims;
    if (m >= n) {
      udims[x_rank - 2] = min_mn;
    } else {
      ldims[x_rank - 1] = min_mn;
    }
    u->set_dims(udims);
    u->set_dtype(x.dtype());
    l->set_dims(ldims);
    l->set_dtype(x.dtype());
  }
  if (unpack_pivots) {
    auto pdims = x_dims;
    pdims[x_rank - 1] = m;
    pmat->set_dims(pdims);
    pmat->set_dtype(x.dtype());
  }
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
void MarginCrossEntropyInferMeta(const MetaTensor& logits,
                                 const MetaTensor& label,
                                 bool return_softmax,
                                 int ring_id,
                                 int rank,
                                 int nranks,
                                 float margin1,
                                 float margin2,
                                 float margin3,
                                 float scale,
                                 MetaTensor* softmax,
                                 MetaTensor* loss,
                                 MetaConfig config) {
  PADDLE_ENFORCE_NOT_NULL(
      logits,
      phi::errors::InvalidArgument("Input of logits should not be null."));
  PADDLE_ENFORCE_NOT_NULL(
      label,
      phi::errors::InvalidArgument("Input of label should not be null."));
  auto logits_dims = logits.dims();
  auto labels_dims = label.dims();

  auto logits_rank = logits_dims.size();
  auto axis = logits_rank - 1;
  for (int i = 0; i < logits_rank; i++) {
    if (i != axis) {
      if (config.is_runtime || (logits_dims[i] > 0 && labels_dims[i] > 0)) {
        PADDLE_ENFORCE_EQ(logits_dims[i],
                          labels_dims[i],
                          phi::errors::InvalidArgument(
                              "Input(Logits) and Input(Label) should in "
                              "same shape in dimensions except axis."));
      }
    }
  }

  if (labels_dims.size() > 1) {
    PADDLE_ENFORCE_EQ(
        labels_dims[logits_rank - 1],
        1UL,
        phi::errors::InvalidArgument(
            "the last dimension of Input(Label) should be 1."
            "But received: the last dimension of Input(Label) is [%d],"
            "the last dimension is [%d]",
            labels_dims[logits_rank - 1],
            logits_rank - 1));
  }

  softmax->set_dims(logits_dims);
  softmax->set_dtype(logits.dtype());

  logits_dims[axis] = 1;
  loss->set_dims(logits_dims);
  loss->set_dtype(logits.dtype());

  softmax->share_lod(logits);
  loss->share_lod(logits);
}

H
hong 已提交
1989 1990 1991 1992 1993 1994 1995
void MaskedSelectInferMeta(const MetaTensor& x,
                           const MetaTensor& mask,
                           MetaTensor* out) {
  out->set_dims({-1});  // can not infer
  out->set_dtype(x.dtype());
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
void MatmulInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     bool trans_x,
                     bool trans_y,
                     MetaTensor* out) {
  std::vector<int64_t> dims_x = phi::vectorize(x.dims());
  std::vector<int64_t> dims_y = phi::vectorize(y.dims());
  auto ndims_x = dims_x.size();
  auto ndims_y = dims_y.size();
  PADDLE_ENFORCE_GT(ndims_x,
                    0UL,
                    phi::errors::InvalidArgument(
                        "The Input(x) dims size must be greater than 0,"
                        " but reviced dims size is 0. "));
  PADDLE_ENFORCE_GT(ndims_y,
                    0UL,
                    phi::errors::InvalidArgument(
                        "The Input(y) dims size must be greater than 0,"
                        " but reviced dims size is 0. "));

  bool x_broadcasted = false, y_broadcasted = false;
  if (ndims_x == 1) {
    dims_x.insert(dims_x.begin(), 1);
    ndims_x = 2;
    x_broadcasted = true;
  }

  if (ndims_y == 1) {
    dims_y.push_back(1);
    ndims_y = 2;
    y_broadcasted = true;
  }

  size_t M, N;
  if (trans_x) {
    M = dims_x[ndims_x - 1];
  } else {
    M = dims_x[ndims_x - 2];
  }
  if (trans_y) {
    N = dims_y[ndims_y - 2];
  } else {
    N = dims_y[ndims_y - 1];
  }

  std::vector<int64_t> new_dims;
  if (ndims_x > ndims_y) {
    new_dims.assign(dims_x.begin(), dims_x.end() - 2);
  } else if (ndims_x < ndims_y) {
    new_dims.assign(dims_y.begin(), dims_y.end() - 2);
  } else {
    new_dims.reserve(ndims_x);
    for (size_t i = 0; i < ndims_x - 2; ++i) {
      new_dims.push_back(std::max(dims_x[i], dims_y[i]));
    }
  }
  if (!x_broadcasted) {
    new_dims.push_back(M);
  }
  if (!y_broadcasted) {
    new_dims.push_back(N);
  }
  if (x_broadcasted && y_broadcasted) {
    new_dims.push_back(1);
  }

  auto ddim_out = phi::make_ddim(new_dims);

  out->set_dims(ddim_out);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
}

C
Chen Weihang 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
void MatmulWithFlattenInferMeta(const MetaTensor& x,
                                const MetaTensor& y,
                                int x_num_col_dims,
                                int y_num_col_dims,
                                MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
          << " x_num_col_dims=" << x_num_col_dims
          << " y_num_col_dims=" << y_num_col_dims;

  PADDLE_ENFORCE_NE(phi::product(y_dims),
                    0,
                    phi::errors::PreconditionNotMet(
                        "The Input variable Y has not "
                        "been initialized. You may need to confirm "
                        "if you put exe.run(startup_program) "
                        "after optimizer.minimize function."));
  PADDLE_ENFORCE_GT(
      x_dims.size(),
      x_num_col_dims,
      phi::errors::InvalidArgument(
          "The input tensor X's dimensions of MulOp "
          "should be larger than x_num_col_dims. But received X's "
          "dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
          x_dims.size(),
          x_dims,
          x_num_col_dims));
  PADDLE_ENFORCE_GT(
      y_dims.size(),
      y_num_col_dims,
      phi::errors::InvalidArgument(
          "The input tensor Y's dimensions of MulOp "
          "should be larger than y_num_col_dims. But received Y's "
          "dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
          y_dims.size(),
          y_dims,
          y_num_col_dims));

  auto x_mat_dims = phi::flatten_to_2d(x_dims, x_num_col_dims);
  auto y_mat_dims = phi::flatten_to_2d(y_dims, y_num_col_dims);

  PADDLE_ENFORCE_EQ(
      x_mat_dims[1],
      y_mat_dims[0],
      phi::errors::InvalidArgument(
          "After flatten the input tensor X and Y to 2-D dimensions matrix "
          "X1 and Y1, the matrix X1's width must be equal with matrix Y1's "
          "height. But received X's shape = [%s], X1's shape = [%s], X1's "
          "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = "
          "%s.",
          x_dims,
          x_mat_dims,
          x_mat_dims[1],
          y_dims,
          y_mat_dims,
          y_mat_dims[0]));
  std::vector<int64_t> output_dims;
  output_dims.reserve(
      static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

  for (int i = 0; i < x_num_col_dims; ++i) {
    output_dims.push_back(x_dims[i]);
  }

  for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
    output_dims.push_back(y_dims[i]);
  }

  out->set_dims(phi::make_ddim(output_dims));
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

Z
zhiboniu 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
void MatrixNMSInferMeta(const MetaTensor& bboxes,
                        const MetaTensor& scores,
                        float score_threshold,
                        int nms_top_k,
                        int keep_top_k,
                        float post_threshold,
                        bool use_gaussian,
                        float gaussian_sigma,
                        int background_label,
                        bool normalized,
                        MetaTensor* out,
                        MetaTensor* index,
                        MetaTensor* roisnum,
                        MetaConfig config) {
  auto box_dims = bboxes.dims();
  auto score_dims = scores.dims();
  auto score_size = score_dims.size();

  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        score_size == 3,
        true,
        errors::InvalidArgument("The rank of Input(Scores) must be 3. "
                                "But received rank = %d.",
                                score_size));
    PADDLE_ENFORCE_EQ(
        box_dims.size(),
        3,
        errors::InvalidArgument("The rank of Input(BBoxes) must be 3."
                                "But received rank = %d.",
                                box_dims.size()));
    PADDLE_ENFORCE_EQ(box_dims[2] == 4,
                      true,
                      errors::InvalidArgument(
                          "The last dimension of Input (BBoxes) must be 4, "
                          "represents the layout of coordinate "
                          "[xmin, ymin, xmax, ymax]."));
    PADDLE_ENFORCE_EQ(
        box_dims[1],
        score_dims[2],
        errors::InvalidArgument(
            "The 2nd dimension of Input(BBoxes) must be equal to "
            "last dimension of Input(Scores), which represents the "
            "predicted bboxes."
            "But received box_dims[1](%s) != socre_dims[2](%s)",
            box_dims[1],
            score_dims[2]));
  }
  out->set_dims({box_dims[1], box_dims[2] + 2});
  out->set_dtype(bboxes.dtype());
  index->set_dims({box_dims[1], 1});
  index->set_dtype(phi::DataType::INT32);
  if (roisnum != nullptr) {
    roisnum->set_dims({-1});
    roisnum->set_dtype(phi::DataType::INT32);
  }
}

2202 2203 2204 2205 2206 2207 2208 2209
void MatrixRankStaticInferMeta(const MetaTensor& x,
                               const MetaTensor& atol_tensor,
                               bool use_default_tol,
                               bool hermitian,
                               MetaTensor* out) {
  if (atol_tensor) {
    MatrixRankTolInferMeta(x, atol_tensor, use_default_tol, hermitian, out);
  } else {
Z
zhangyuqin1998 已提交
2210
    MatrixRankInferMeta(x, use_default_tol, hermitian, out);
2211 2212 2213
  }
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
void MatrixRankTolInferMeta(const MetaTensor& x,
                            const MetaTensor& atol_tensor,
                            bool use_default_tol,
                            bool hermitian,
                            MetaTensor* out) {
  auto dim_x = x.dims();
  PADDLE_ENFORCE_GE(
      dim_x.size(),
      2,
      phi::errors::InvalidArgument("The dims of input must be greater than 2"));

  if (hermitian) {
    int rows = dim_x[dim_x.size() - 2];
    int cols = dim_x[dim_x.size() - 1];
    PADDLE_ENFORCE_EQ(rows,
                      cols,
                      phi::errors::InvalidArgument(
                          "if hermitian == true, matrix should be n*n"));
  }
  DDim dim_x_batch = detail::CheckAndGetOutputDim(dim_x);
  auto dim_tol = atol_tensor.dims();
  if (dim_x_batch == dim_tol) {
    out->set_dims(dim_x_batch);
  } else {
    int max_dim = std::max(dim_x_batch.size(), dim_tol.size());
    int axis = std::abs(dim_x_batch.size() - dim_tol.size());
    std::vector<int> x_batch_dims_array(max_dim);
    std::vector<int> tol_dims_array(max_dim);
    std::vector<int> out_dims_array(max_dim);
    phi::funcs::GetBroadcastDimsArrays(dim_x_batch,
                                       dim_tol,
                                       x_batch_dims_array.data(),
                                       tol_dims_array.data(),
                                       out_dims_array.data(),
                                       max_dim,
                                       axis);
    out->set_dims(phi::make_ddim(out_dims_array));
  }
  out->share_lod(x);
}

F
furnace 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
void MvInferMeta(const MetaTensor& x, const MetaTensor& vec, MetaTensor* out) {
  auto dim_x = x.dims();
  auto dim_vec = vec.dims();
  PADDLE_ENFORCE_EQ(
      dim_x.size(),
      2,
      phi::errors::InvalidArgument("The rank of input X should be 2, but is %d",
                                   dim_x.size()));
  PADDLE_ENFORCE_EQ(
      dim_vec.size(),
      1,
      phi::errors::InvalidArgument(
          "The rank of input Vec should be 1, but is %d", dim_vec.size()));
  PADDLE_ENFORCE_EQ(dim_x[1],
                    dim_vec[0],
                    phi::errors::InvalidArgument(
                        "X's second dimension is expected to be equal to "
                        "Vec's first dimension"
2273
                        "but received X'shape = [%s], Vec's shape = [%s]",
F
furnace 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
                        dim_x,
                        dim_vec));

  auto dim_out = phi::make_ddim({dim_x[0]});

  out->set_dims(dim_out);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

2285 2286 2287
void PReluInferMeta(const MetaTensor& x,
                    const MetaTensor& alpha,
                    const std::string& data_format,
2288
                    const std::string& mode,
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
                    MetaTensor* out,
                    MetaConfig config) {
  auto x_dim = x.dims();
  if (mode == "all") {
    PADDLE_ENFORCE_EQ(phi::product(alpha.dims()),
                      1,
                      phi::errors::InvalidArgument(
                          "For mode 'all', size of weight Alpha must be one. "
                          "But recevied alpha's size: %d.",
                          product(alpha.dims())));
  } else if (mode == "channel") {
    auto x_rank = x_dim.size();
    PADDLE_ENFORCE_GE(x_rank,
                      2,
                      phi::errors::InvalidArgument(
                          "For mode 'channel', rank of input X must be "
                          "equal or larger than 2. But recevied X's "
                          "rank: %d",
                          x_rank));
    PADDLE_ENFORCE_EQ(data_format == "NCHW" || data_format == "NHWC",
                      true,
                      phi::errors::InvalidArgument(
                          "For mode 'channel', data_format must be one of "
                          "NCHW and NHWC. But recevied data_format: %s",
                          data_format));
    if (data_format == "NCHW" || config.is_run_mkldnn_kernel) {
      PADDLE_ENFORCE_EQ(product(alpha.dims()) == x_dim[1],
                        true,
                        phi::errors::InvalidArgument(
                            "For mode 'channel', size of weight Alpha must be "
                            "equal to the number of channels of input(x). But "
                            "recevied alpha's size: %d, x_dim[1]: %d",
                            product(alpha.dims()),
                            x_dim[1]));
    } else {
      PADDLE_ENFORCE_EQ(product(alpha.dims()) == x_dim[x_rank - 1],
                        true,
                        phi::errors::InvalidArgument(
                            "For mode 'channel', size of weight Alpha must be "
                            "equal to the number of channels of input(x). But "
                            "recevied alpha's size: %d, x_dim[%d]: %d",
                            product(alpha.dims()),
                            x_rank - 1,
                            x_dim[x_rank - 1]));
    }
  } else if (mode == "element") {
    auto alpha_dim = alpha.dims();
    auto alpha_rank = alpha_dim.size();
    auto x_rank = x_dim.size();
    PADDLE_ENFORCE_GE(x_rank,
                      1,
                      phi::errors::InvalidArgument(
                          "For mode 'element', rank of input X must be "
                          "equal or larger than 2. But recevied X's "
                          "rank: %d",
                          x_rank));
    PADDLE_ENFORCE_EQ(
        alpha_rank,
        x_rank,
        phi::errors::InvalidArgument(
            "For mode 'element', rank of weight Alpha must be ",
            "equal to the rank of input(x). But recevied alpha's rank: %d, "
            "x's rank: %d.",
            alpha_rank,
            x_rank));
    size_t x_product = 1;
    size_t alpha_product = 1;
    for (int64_t i = x_rank - 1; i > 0; i--) {
      x_product *= x_dim[i];
      alpha_product *= alpha_dim[i];
    }
    PADDLE_ENFORCE_EQ(
        alpha_product,
        x_product,
        phi::errors::InvalidArgument(
            "For mode 'element', the size of weight Alpha must be "
            "equal to the size of input(x). But recevied alpha's size: %d, "
            "x's size: %d.",
            alpha_product,
            x_product));
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "Attr(mode) of prelu must be one of 'all', 'channel', or 'element'. "
        "But recevied "
        "mode: '%s'.",
        mode));
  }
  out->set_dims(x_dim);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

Z
zhiboniu 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
                               std::vector<float>* output_aspect_ratior) {
  constexpr float epsilon = 1e-6;
  output_aspect_ratior->clear();
  output_aspect_ratior->push_back(1.0f);
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
    for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
      if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
      output_aspect_ratior->push_back(ar);
      if (flip) {
        output_aspect_ratior->push_back(1.0f / ar);
      }
    }
  }
}

void PriorBoxInferMeta(const MetaTensor& input,
                       const MetaTensor& image,
                       const std::vector<float>& min_sizes,
Z
zhangyuqin1998 已提交
2409
                       const std::vector<float>& max_sizes,
Z
zhiboniu 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
                       const std::vector<float>& aspect_ratios,
                       const std::vector<float>& variances,
                       bool flip,
                       bool clip,
                       float step_w,
                       float step_h,
                       float offset,
                       bool min_max_aspect_ratios_order,
                       MetaTensor* out,
                       MetaTensor* var) {
  auto image_dims = image.dims();
  auto input_dims = input.dims();

  PADDLE_ENFORCE_EQ(
      image_dims.size(),
      4,
      phi::errors::InvalidArgument(
          "The Input(Image) of Op(PriorBoxOp) should be a 4-D Tensor "
          "and data format is NCHW. But received Image's dimensions = %d, "
          "shape = [%s].",
          image_dims.size(),
          image_dims));
  PADDLE_ENFORCE_EQ(
      input_dims.size(),
      4,
      phi::errors::InvalidArgument(
          "The Input(Input) of Op(PriorBoxOp) should be a 4-D Tensor "
          "and data format is NCHW. But received Input's dimensions = %d, "
          "shape = [%s].",
          input_dims.size(),
          input_dims));

  std::vector<float> aspect_ratios_vec;
  ExpandAspectRatios(aspect_ratios, flip, &aspect_ratios_vec);

  size_t num_priors = aspect_ratios_vec.size() * min_sizes.size();
  if (max_sizes.size() > 0) {
    PADDLE_ENFORCE_EQ(
        max_sizes.size(),
        min_sizes.size(),
        phi::errors::InvalidArgument(
            "The length of min_size and "
            "max_size must be equal. But received: min_size's length is %d, "
            "max_size's length is %d.",
            min_sizes.size(),
            max_sizes.size()));
    num_priors += max_sizes.size();
    for (size_t i = 0; i < max_sizes.size(); ++i) {
      PADDLE_ENFORCE_GT(
          max_sizes[i],
          min_sizes[i],
          phi::errors::InvalidArgument(
              "max_size[%d] must be greater "
              "than min_size[%d]. But received: max_size[%d] is %f, "
              "min_size[%d] is %f.",
              i,
              i,
              i,
              max_sizes[i],
              i,
              min_sizes[i]));
    }
  }

  std::vector<int64_t> dim_vec(4);
  dim_vec[0] = input_dims[2];
  dim_vec[1] = input_dims[3];
  dim_vec[2] = num_priors;
  dim_vec[3] = 4;

  out->set_dtype(input.dtype());
  var->set_dtype(input.dtype());
  out->set_dims(phi::make_ddim(dim_vec));
  var->set_dims(phi::make_ddim(dim_vec));
}

S
seemingwang 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
void RepeatInterleaveWithTensorIndexInferMeta(const MetaTensor& x,
                                              const MetaTensor& repeats,
                                              int dim,
                                              MetaTensor* out) {
  const auto& input_dim = x.dims();
  auto output_dim = phi::vectorize(input_dim);
  PADDLE_ENFORCE_EQ(
      dim < input_dim.size() && dim >= (0 - input_dim.size()),
      true,
      phi::errors::OutOfRange(
          "Attr(dim) is out of range, It's expected "
          "to be in range of [-%d, %d]. But received Attr(dim) = %d.",
          input_dim.size(),
          input_dim.size() - 1,
          dim));

  auto repeats_dim = repeats.dims();

  PADDLE_ENFORCE_EQ(
      repeats_dim.size() == 1 ||
          (repeats_dim.size() == 2 && repeats_dim[1] == 1),
      true,
      phi::errors::InvalidArgument(
          "The 'shape' of Input(RepeatsTensor) must be 1-D tensor. "
          "But received: the 'shape' of Input(Index) is [%s], "
          "the dimension of Input(Index) is [%d].",
          repeats_dim,
          repeats_dim.size()));

  PADDLE_ENFORCE_EQ(repeats_dim[0] != 0,
                    true,
                    phi::errors::InvalidArgument(
                        "The length of Input(RepeatsTensor) can't be 0."));
  PADDLE_ENFORCE_NE(out,
                    nullptr,
                    phi::errors::InvalidArgument(
                        "repeat_interleave's output tensor can't be nullptr"));
  if (dim < 0) {
    dim += input_dim.size();
  }
  output_dim[dim] = -1;

  out->set_dims(phi::make_ddim(output_dim));
  out->share_lod(x);
  out->set_dtype(x.dtype());
}
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
void SearchsortedInferMeta(const MetaTensor& sorted_sequence,
                           const MetaTensor& value,
                           bool out_int32,
                           bool right,
                           MetaTensor* out) {
  auto sequences_dims = sorted_sequence.dims();
  auto values_dims = value.dims();

  bool flag = true;
  if (sequences_dims.size() != values_dims.size()) {
    flag = false;
  }
  const auto& sequences_dims_size = sequences_dims.size();
  for (int64_t dim = 0; dim < sequences_dims_size - 1; ++dim) {
    if (sequences_dims[dim] != values_dims[dim]) {
      flag = false;
      break;
    }
  }
  if (sequences_dims.size() != 1) {
    PADDLE_ENFORCE_EQ(
        flag,
        true,
        phi::errors::Unavailable(
            "The dimensions of sorted_sequence tensor ( %s ) and values "
            "tensor ( %s ) can not match. Because the input sorted_sequence "
            "tensor must be 1 dimension or the first N-1 dimensions of "
            "sorted_sequence tensor and input values tensor must match. "
            "Please input appropriate sorted_sequence and values again! ",
            sequences_dims,
            values_dims));
  }

  if (out_int32) {
    PADDLE_ENFORCE_LT(
        sequences_dims[sequences_dims.size() - 1],
        std::numeric_limits<int>::max(),
        phi::errors::Unavailable(
            "The size of sorted_sequence %d exceed the maximum limit d%. "
            "Because the size of sorted_sequence should be less than the "
            "output maximum value for int32 bit. Please set appropriate "
            "sorted_sequence to meet this requirement! ",
            sequences_dims[sequences_dims.size() - 1],
            std::numeric_limits<int>::max()));
  }

  out->set_dims(values_dims);
  if (out_int32) {
    out->set_dtype(DataType::INT32);
  } else {
    out->set_dtype(DataType::INT64);
  }
}

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
void SoftmaxMaskFuseInferMeta(const MetaTensor& x,
                              const MetaTensor& mask,
                              MetaTensor* out) {
  auto x_dims = x.dims();
  auto mask_dims = mask.dims();

  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      4,
      phi::errors::InvalidArgument("Input x must be in 4D dimension but "
                                   "received the dimension of X is %d",
                                   x_dims.size()));
  PADDLE_ENFORCE_EQ(
      mask_dims.size(),
      4,
      phi::errors::InvalidArgument("Input mask must be in 4D dimension but "
                                   "received the dimension of mask is %d",
                                   mask_dims.size()));

  out->share_meta(x);
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
void SegmentPoolInferMeta(const MetaTensor& x,
                          const MetaTensor& segment_ids,
                          const std::string& pooltype,
                          MetaTensor* out,
                          MetaTensor* summed_ids,
                          MetaConfig config) {
  auto dims = x.dims();
  dims[0] = -1;
  out->set_dims(dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());

  if (pooltype == "MEAN") {
    summed_ids->set_dims({-1, 1});
    summed_ids->set_dtype(x.dtype());
    summed_ids->set_layout(x.layout());
  }
}

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
void SigmoidCrossEntropyWithLogitsInferMeta(const MetaTensor& x,
                                            const MetaTensor& label,
                                            bool normalize,
                                            int ignore_index,
                                            MetaTensor* out,
                                            MetaConfig config) {
  auto x_dims = x.dims();
  auto labels_dims = label.dims();
  int rank = x_dims.size();
  PADDLE_ENFORCE_EQ(rank,
                    labels_dims.size(),
                    phi::errors::InvalidArgument(
                        "Input(X) and Input(Label) shall have the same rank."
                        "But received: the rank of Input(X) is [%d], "
                        "the rank of Input(Label) is [%d].",
                        rank,
                        labels_dims.size()));

  bool check = true;
  if ((!config.is_runtime) &&
      (phi::product(x_dims) <= 0 || phi::product(labels_dims) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(
        phi::slice_ddim(x_dims, 0, rank),
        phi::slice_ddim(labels_dims, 0, rank),
        phi::errors::InvalidArgument(
            "Input(X) and Input(Label) shall have the same shape "
            "except the last dimension. But received: the shape of "
            "Input(X) is [%s], the shape of Input(Label) is [%s].",
            x_dims,
            labels_dims));
  }

  out->set_dims(x_dims);
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
void TakeAlongAxisInferMeta(const MetaTensor& x,
                            const MetaTensor& index,
                            int axis,
                            MetaTensor* out) {
  auto input_dim = x.dims();
  auto index_dim = index.dims();

  PADDLE_ENFORCE_GT(input_dim.size(),
                    0,
                    phi::errors::InvalidArgument(
                        "Dimension of the input(Input) of TakeAlongAxisOp "
                        "should be greater than 0.",
                        input_dim));

  PADDLE_ENFORCE_GT(index_dim.size(),
                    0,
                    phi::errors::InvalidArgument(
                        "Dimension of the input(Index) of TakeAlongAxisOp "
                        "should be greater than 0.",
                        index_dim));

  out->set_dims(index_dim);
  out->set_dtype(x.dtype());
}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
void TriangularSolveInferMeta(const MetaTensor& x,
                              const MetaTensor& y,
                              bool upper,
                              bool transpose,
                              bool unitriangular,
                              MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  auto x_dims_n = x_dims.size();
  auto y_dims_n = y_dims.size();

  PADDLE_ENFORCE_GE(x_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "The input tensor X's dimensions of TriangularSolveOp "
                        "should be >= 2. But received X's "
                        "dimensions = %d, X's shape = [%s]",
                        x_dims.size(),
                        x_dims));

  PADDLE_ENFORCE_GE(y_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "The input tensor Y's dimensions of TriangularSolveOp "
                        "should be >=2. But received Y's "
                        "dimensions = %d, Y's shape = [%s]",
                        y_dims.size(),
                        y_dims));

  PADDLE_ENFORCE_EQ(x_dims[x_dims_n - 2],
                    x_dims[x_dims_n - 1],
                    phi::errors::InvalidArgument(
                        "The inner-most 2 dimensions of Input(X) all should "
                        "be square matrices "
                        "But received X's shape[-2] = %d and shape[-1] = %d.",
                        x_dims[x_dims_n - 2],
                        x_dims[x_dims_n - 1]));

  std::vector<int64_t> x_dims_vec = phi::vectorize(x_dims);
  std::vector<int64_t> y_dims_vec = phi::vectorize(y_dims);

  std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(), x_dims_vec.end() - 2);
  std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(), y_dims_vec.end() - 2);

  std::vector<int64_t> expand_batch_portion =
      funcs::MatrixGetBroadcastBatchPortion(x_dims_vec_cut, y_dims_vec_cut);

  std::vector<int64_t> y_broadcast_dims({expand_batch_portion});
  y_broadcast_dims.insert(y_broadcast_dims.end(),
                          {y_dims_vec[y_dims_n - 2], y_dims_vec[y_dims_n - 1]});

  // dim of 'out' is the same with 'Y' after broadcast
  out->set_dims(phi::make_ddim(y_broadcast_dims));
  out->set_dtype(y.dtype());
  out->set_layout(y.layout());
  out->share_lod(y);
}

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
void LstsqInferMeta(const MetaTensor& x,
                    const MetaTensor& y,
                    const Scalar& rcond,
                    const std::string& driver,
                    MetaTensor* solution,
                    MetaTensor* residuals,
                    MetaTensor* rank,
                    MetaTensor* singular_values) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  int x_rank = x_dims.size();
  int y_rank = y_dims.size();

  int m = x_dims[x_rank - 2];
  int n = x_dims[x_rank - 1];
  int nrhs = y_dims[x_rank - 1];

  PADDLE_ENFORCE_GE(
      x_rank,
      2,
      phi::errors::InvalidArgument("Expects input tensor x to be not less than "
                                   "2 dimentions, but got dimention %d",
                                   x_rank));
  PADDLE_ENFORCE_GE(
      y_rank,
      2,
      phi::errors::InvalidArgument("Expects input tensor y to be not less than "
                                   "2 dimentions, but got dimention %d",
                                   y_rank));

  PADDLE_ENFORCE_EQ(
      x_rank,
      y_rank,
      phi::errors::InvalidArgument(
          "Expects input tensor x and y to have the same dimension "
          "but got x's dimention [%d] and y's dimention [%d]",
          x_rank,
          y_rank));

  std::vector<int> batch_dims_vec{};
  for (int i = 0; i < x_rank - 2; ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i],
                      y_dims[i],
                      phi::errors::InvalidArgument(
                          "Expects input tensor x and y to have the same batch "
                          "dimension, but got x's batch dimention [%d] and "
                          "y's batch dimention [%d] in %d-th dim",
                          x_dims[i],
                          y_dims[i],
                          i));
    batch_dims_vec.emplace_back(x_dims[i]);
  }

  PADDLE_ENFORCE_EQ(
      m,
      y_dims[y_rank - 2],
      phi::errors::InvalidArgument(
          "Expects input tensor x and y to have the same row dimension "
          "of the inner-most 2-dims matrix, "
          "but got x's row dimention [%d] and y's row dimention [%d]",
          m,
          y_dims[y_rank - 2]));

  rank->set_dims(phi::make_ddim(batch_dims_vec));

  if (m > n) {
    batch_dims_vec.emplace_back(nrhs);
    residuals->set_dims(phi::make_ddim(batch_dims_vec));
    batch_dims_vec.pop_back();
  } else {
    residuals->set_dims(phi::make_ddim({0}));
  }
  residuals->set_dtype(y.dtype());

  batch_dims_vec.emplace_back(std::min(m, n));
  singular_values->set_dims(phi::make_ddim(batch_dims_vec));
  singular_values->set_dtype(y.dtype());

  batch_dims_vec[x_rank - 2] = n;
  batch_dims_vec.emplace_back(nrhs);
  solution->set_dims(phi::make_ddim(batch_dims_vec));
  solution->set_dtype(y.dtype());
}

H
hong 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
void YoloBoxInferMeta(const MetaTensor& x,
                      const MetaTensor& img_size,
                      const std::vector<int>& anchors,
                      int class_num,
                      float conf_thresh,
                      int downsample_ratio,
                      bool clip_bbox,
                      float scale_x_y,
                      bool iou_aware,
                      float iou_aware_factor,
                      MetaTensor* boxes,
                      MetaTensor* scores,
                      MetaConfig config) {
  auto dim_x = x.dims();
  auto dim_imgsize = img_size.dims();
  int anchor_num = anchors.size() / 2;

  PADDLE_ENFORCE_EQ(
      dim_x.size(),
      4,
      phi::errors::InvalidArgument("Input(X) should be a 4-D tensor."
                                   "But received X dimension(%s)",
                                   dim_x.size()));
  if (iou_aware) {
    PADDLE_ENFORCE_EQ(
        dim_x[1],
        anchor_num * (6 + class_num),
        phi::errors::InvalidArgument(
            "Input(X) dim[1] should be equal to (anchor_mask_number * (6 "
            "+ class_num)) while iou_aware is true."
            "But received dim[1](%s) != (anchor_mask_number * "
            "(6+class_num)(%s).",
            dim_x[1],
            anchor_num * (6 + class_num)));
    PADDLE_ENFORCE_GE(
        iou_aware_factor,
        0,
        phi::errors::InvalidArgument(
            "Attr(iou_aware_factor) should greater than or equal to 0."
            "But received iou_aware_factor (%s)",
            iou_aware_factor));
    PADDLE_ENFORCE_LE(
        iou_aware_factor,
        1,
        phi::errors::InvalidArgument(
            "Attr(iou_aware_factor) should less than or equal to 1."
            "But received iou_aware_factor (%s)",
            iou_aware_factor));
  } else {
    PADDLE_ENFORCE_EQ(
        dim_x[1],
        anchor_num * (5 + class_num),
        phi::errors::InvalidArgument(
            "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
            "+ class_num))."
            "But received dim[1](%s) != (anchor_mask_number * "
            "(5+class_num)(%s).",
            dim_x[1],
            anchor_num * (5 + class_num)));
  }
  PADDLE_ENFORCE_EQ(
      dim_imgsize.size(),
      2,
      phi::errors::InvalidArgument("Input(ImgSize) should be a 2-D tensor."
                                   "But received Imgsize size(%s)",
                                   dim_imgsize.size()));
  if ((dim_imgsize[0] > 0 && dim_x[0] > 0) || config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        dim_imgsize[0],
        dim_x[0],
        phi::errors::InvalidArgument(
            "Input(ImgSize) dim[0] and Input(X) dim[0] should be same."));
  }
  PADDLE_ENFORCE_EQ(
      dim_imgsize[1],
      2,
      phi::errors::InvalidArgument("Input(ImgSize) dim[1] should be 2."
                                   "But received imgsize dim[1](%s).",
                                   dim_imgsize[1]));
  PADDLE_ENFORCE_GT(anchors.size(),
                    0,
                    phi::errors::InvalidArgument(
                        "Attr(anchors) length should be greater than 0."
                        "But received anchors length(%s).",
                        anchors.size()));
  PADDLE_ENFORCE_EQ(anchors.size() % 2,
                    0,
                    phi::errors::InvalidArgument(
                        "Attr(anchors) length should be even integer."
                        "But received anchors length (%s)",
                        anchors.size()));
  PADDLE_ENFORCE_GT(class_num,
                    0,
                    phi::errors::InvalidArgument(
                        "Attr(class_num) should be an integer greater than 0."
                        "But received class_num (%s)",
                        class_num));

  int box_num;
  if ((dim_x[2] > 0 && dim_x[3] > 0) || config.is_runtime) {
    box_num = dim_x[2] * dim_x[3] * anchor_num;
  } else {
    box_num = -1;
  }
  std::vector<int64_t> dim_boxes({dim_x[0], box_num, 4});
  boxes->set_dims(phi::make_ddim(dim_boxes));
  boxes->set_dtype(x.dtype());

  std::vector<int64_t> dim_scores({dim_x[0], box_num, class_num});
  scores->set_dims(phi::make_ddim(dim_scores));
}

C
Chen Weihang 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
void ValueCompareInferMeta(const MetaTensor& x,
                           const MetaTensor& y,
                           MetaTensor* out,
                           MetaConfig config) {
  detail::BinarySameInputDimsCheck(x, y, config);

  out->set_dims(x.dims());
  out->set_dtype(DataType::BOOL);
}

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
void SolveInferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  std::vector<int64_t> x_dims_vec = phi::vectorize(x.dims());
  std::vector<int64_t> y_dims_vec = phi::vectorize(y.dims());

  auto x_dims_n = x_dims_vec.size();
  auto y_dims_n = y_dims_vec.size();

  PADDLE_ENFORCE_GT(
      x_dims_n,
      1,
      phi::errors::InvalidArgument("The input tensor X's dimensions of SolveOp "
                                   "should be larger than 1. But received X's "
                                   "dimensions = %d, X's shape = [%s]",
                                   x_dims_n,
                                   x_dims));

  PADDLE_ENFORCE_GE(y_dims_n,
                    1,
                    phi::errors::InvalidArgument(
                        "The input tensor Y's dimensions of SolveOp "
                        "should be larger than or equal 1. But received Y's "
                        "dimensions = %d, Y's shape = [%s]",
                        y_dims_n,
                        y_dims));

  PADDLE_ENFORCE_EQ(x_dims[x_dims_n - 2],
                    x_dims[x_dims_n - 1],
                    phi::errors::InvalidArgument(
                        "The inner-most 2 dimensions of Input(X) all should "
                        "be square matrices "
                        "But received X's shape[-2] = %d and shape[-1] = %d.",
                        x_dims[x_dims_n - 2],
                        x_dims[x_dims_n - 1]));

  bool x_broadcasted = false, y_broadcasted = false;
  bool trans_x = false, trans_y = false;
  if (x_dims_n == 1) {
    x_dims_vec.insert(x_dims_vec.begin(), 1);
    x_dims_n = 2;
    x_broadcasted = true;
  }

  if (y_dims_n == 1) {
    y_dims_vec.push_back(1);
    y_dims_n = 2;
    y_broadcasted = true;
  }

  size_t M, N;
  if (trans_x) {
    M = x_dims_vec[x_dims_n - 1];
  } else {
    M = x_dims_vec[x_dims_n - 2];
  }
  if (trans_y) {
    N = y_dims_vec[y_dims_n - 2];
  } else {
    N = y_dims_vec[y_dims_n - 1];
  }

  std::vector<int64_t> new_dims;
  if (x_dims_n >= y_dims_n) {
    new_dims.assign(x_dims_vec.begin(), x_dims_vec.end() - 2);
  } else {
    new_dims.assign(y_dims_vec.begin(), y_dims_vec.end() - 2);
  }
  if (!x_broadcasted) {
    new_dims.push_back(M);
  }
  if (!y_broadcasted) {
    new_dims.push_back(N);
  }
  if (x_broadcasted && y_broadcasted) {
    new_dims.push_back(1);
  }

  auto out_dims = phi::make_ddim(new_dims);

  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

X
xiaoting 已提交
3045 3046 3047 3048 3049
void UnpoolInferMeta(const MetaTensor& x,
                     const MetaTensor& indices,
                     const std::vector<int>& ksize,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
3050
                     const IntArray& output_size,
X
xiaoting 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
                     const std::string& data_format,
                     MetaTensor* out,
                     MetaConfig config) {
  auto in_x_dims = x.dims();
  auto in_y_dims = indices.dims();

  PADDLE_ENFORCE_EQ(in_x_dims.size() == 4,
                    true,
                    phi::errors::InvalidArgument(
                        "Unpool Intput(X) must be of 4-dimensional, but "
                        "received Input(X)'s dimensions is %d.",
                        in_x_dims.size()));
  PADDLE_ENFORCE_EQ(in_x_dims,
                    in_y_dims,
                    phi::errors::InvalidArgument(
                        "The dimensions of Input(X) must equal to be"
                        "the dimensions of Input(Indices), but received"
                        "dimensions of Input(X) is [%d], received dimensions"
                        "of Input(Indices) is [%d]",
                        in_x_dims,
                        in_y_dims));

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
3074 3075 3076 3077 3078

  std::vector<int64_t> output_size_val(output_size.size(), -1);
  if (config.is_runtime || !output_size.FromTensor()) {
    output_size_val = output_size.GetData();
  }
X
xiaoting 已提交
3079 3080 3081 3082
  for (size_t i = 0; i < ksize.size(); ++i) {
    if (!config.is_runtime && in_x_dims[i + 2] <= 0) {
      output_shape.push_back(-1);
    } else {
3083
      output_shape.push_back(output_size_val[i]);
X
xiaoting 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
    }
  }
  if (out != nullptr) {
    out->set_dims(phi::make_ddim(output_shape));
    out->set_dtype(x.dtype());
  }
}
void Unpool3dInferMeta(const MetaTensor& x,
                       const MetaTensor& indices,
                       const std::vector<int>& ksize,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       const std::vector<int>& output_size,
                       const std::string& data_format,
                       MetaTensor* out,
                       MetaConfig config) {
  auto in_x_dims = x.dims();
  auto in_y_dims = indices.dims();

  PADDLE_ENFORCE_EQ(in_x_dims.size() == 5,
                    true,
                    phi::errors::InvalidArgument(
                        "Unpool Intput(X) must be of 5-dimensional, but "
                        "received Input(X)'s dimensions is %d.",
                        in_x_dims.size()));
  PADDLE_ENFORCE_EQ(in_x_dims,
                    in_y_dims,
                    phi::errors::InvalidArgument(
                        "The dimensions of Input(X) must equal to be"
                        "the dimensions of Input(Indices), but received"
                        "dimensions of Input(X) is [%d], received dimensions"
                        "of Input(Indices) is [%d]",
                        in_x_dims,
                        in_y_dims));

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    if (!config.is_runtime && in_x_dims[i + 2] <= 0) {
      output_shape.push_back(-1);
    } else {
      output_shape.push_back(output_size[i]);
    }
  }
  if (out != nullptr) {
    out->set_dims(phi::make_ddim(output_shape));
    out->set_dtype(x.dtype());
  }
}

3133
}  // namespace phi
3134 3135

PD_REGISTER_INFER_META_FN(add_raw, phi::ElementwiseRawInferMeta);